Nav: Home

'Field patterns' as a new mathematical object

February 14, 2017

University of Utah mathematicians propose a theoretical framework to understand how waves and other disturbances move through materials in conditions that vary in both space and time. The theory, called "field patterns," published today in Proceedings of the Royal Society A.

Field patterns are characteristic patterns of how disturbances react to changing conditions. Because field patterns exhibit characteristics of both propagating waves and localized particles, field pattern theory may answer some of the questions posed by quantum mechanics, in which objects can be treated as both particles and waves. First author Graeme Milton further posits that field patterns could describe the natures of the fundamental components of matter in the universe.

"When you open the doors to a new area," Milton says, "you don't know where it will go."

For an example of field patterns, think of a chessboard. The black squares represent one material and the white squares represent another material with different properties. The horizontal dimension (side to side) represents space, and the vertical dimension (forward and back) represents time. Instead of white and black squares, the chessboard is made of two materials of different refractive properties that bend light differently. As a disturbance, such as a pulse of laser light, moves forward in time, it spreads out over space, encountering boundaries between materials in space and then in time as the materials switch properties/colors with each successive row. Field patterns can describe the propagation of the pulse along characteristic lines with a fixed slope in each square, which is governed by the refractive properties of each square. The characteristic lines branch at the checkerboard square boundaries.

Milton and postdoctoral researcher Ornella Mattei say another good analogy for their theory might be a branching tree.

Think of the root of the tree as the initial disturbance, and the ground as an initial time point. As time progresses (moving up the tree,) the disturbance splits and branches as it encounters boundaries, just like a beam hitting an optical boundary branches into a reflected ray and a transmitted ray, resulting in a complex network of branches near the canopy top. The boundaries can be either in space or time, as the conditions of the host material change. "You get a mess of cascade of disturbances as time goes on," Milton says. "Keeping track of everything is a real headache."

The tree isn't a perfect analogy, however. For special carefully positioned boundaries in space-time, the result is not a messy cascade, but rather a field pattern. "When you look at the field pattern after a sufficiently large period of time, you see that it's basically periodic," says Mattei. In other words, the pattern repeats, like a plaid, after some time.

Milton says that the tree analogy is useful, moreover, when considering the possibility of multiple disturbances in the same system. "The idea of a field pattern is a little like a wave in one tree but a separate wave in a different tree," he says. "You can imagine in one tree there's a wind blowing from one direction that ripples the trees one way. But the other tree, with its own separate sets of leaves, as if the wind is coming from a different direction." Overlapping field patterns don't interact with each other, he says - at least not at this stage of theory development.

Milton said the idea of field patterns came to him while he was pondering a class of materials called hyperbolic metamaterials. In such a material, layers are arranged so that the material's electrical properties are an opposite sign in one direction than they are in the other direction. Because of the way light waves move through hyperbolic metamaterials, they can be used as superlenses to view objects too small to be seen with other microscopy methods. Light can propagate through a superlens along characteristic lines such that two objects, placed too close together to discern with a microscope, can be viewed as separate.

"I was in a hotel in London drawing the lines where the disturbances would propagate and thinking, what if they went diagonally across an inclusion [boundary]?" Milton says. "What about if those connected to other inclusions?" Mattei has been developing and testing field pattern theory, constructing computer simulations to further observe how theoretical systems and patterns behave. She has also been discovering and exploring completely new field patterns.

The applications of field pattern theory are still emerging, but one field they may apply to is quantum mechanics. In quantum mechanics, the probable locations of objects such as electrons are represented as clouds in which the object is likely to be found, and the shape of those clouds can be described using wave-like equations. But when an observer measures the position of an object, the wave-like behavior collapses into a single point of location, like a particle. Thus, objects behave as both particles and as waves.

Field patterns may bridge the wave-particle duality. The disturbances are represented as points and discrete lines, Milton says, like a particle. "But it's diffusing according to something that looks like a wave," he says.

Field pattern theory does not yet contain a provision for the pattern to collapse back into a single point, however, but Milton and Mattei think that field patterns may have a connection to the basic building blocks of matter. Fluctuations in space and time at the smallest scales could give rise to field patterns that manifest themselves as electrons and protons, which make up atoms.

"What we see as electrons, protons or quantum mechanical waves are manifestations of the fundamental super microscopic scale of these field patterns, Milton says.

Milton and Mattei have much to learn about field patterns. For example, in some cases field patterns "blow up," expanding exponentially, seemingly out of control. The theoretical model also doesn't yet contain some properties of waves. But this intial paper is a first step.

"Something may pop up from this," Milton says. "What's really fundamental, though, is going in a completely new direction."
-end-
Find this release and an associated animation here.

Find the full paper here.

University of Utah

Related Quantum Mechanics Articles:

A new quantum data classification protocol brings us nearer to a future 'quantum internet'
A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.
Bridge between quantum mechanics and general relativity still possible
An international team of researchers developed a unified framework that would account for this apparent break down between classical and quantum physics, and they put it to the test using a quantum satellite called Micius.
'Poor man's qubit' can solve quantum problems without going quantum
Researchers have built and demonstrated the first hardware for a probabilistic computer, a possible way to bridge the gap between classical and quantum computing.
Cracking a decades-old test, researchers bolster case for quantum mechanics
At upcoming FiO + LS conference, researchers will discuss creative tactics to get rid of loopholes that have long confounded tests of quantum mechanics.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
NUS scientists discover how to 'lock' heat in place using quantum mechanics
In a global first, NUS scientists have demonstrated that heat energy can be manipulated by utilising the quantum mechanical principle of anti-parity-time symmetry.
New research explores the mechanics of how birds flock
Wildlife researchers have long tried to understand why birds fly in flocks and how different types of flocks work.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
In the blink of an eye: Team uses quantum of light to create new quantum simulator
Imagine being stuck inside a maze and wanting to find your way out.
More Quantum Mechanics News and Quantum Mechanics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.