Nav: Home

Suiker's equations prevent 3-D-printed walls from collapsing or falling over

February 14, 2018

3D-printed materials commonly are soft and flexible during printing, leaving printed walls susceptible to collapse or falling over. Akke Suiker, professor in Applied Mechanics at Eindhoven University of Technology, had a Eureka moment and saw the solution to this structural problem. He developed a model with which engineers can now easily determine the dimensions and printing speeds for which printed wall structures remain stable. His formulae are so elementary that they can become commonplace in the fast growing field of 3D printing.

Conventional concrete deposited in formwork typically is allowed to harden over period of several weeks. But 3D-printed concrete is not. With no supporting formwork, it almost immediately has to bear the weight of the subsequent layers of concrete that are printed on top of it. Everybody can feel the tension rising in their body as the structure gets higher. Is it already stiff and strong enough to add yet another layer on top? It is one of the most important issues in the new field of 3D printing.

This issue was not part of the package of tasks of Professor Akke Suiker, who regularly saw the king-sized concrete printer of his university in action on the way to his office. But on a Saturday morning last March he woke up with an exciting idea how to solve the problem, already jotting down the first mathematical equations on paper during breakfast. In the six months that follow Suiker is completely occupied by the problem, working feverishly on the details. The results are published this week in the International Journal of Mechanical Sciences (1.

Using his equations, Suiker is able to calculate how quickly he can lay down printing layers, given the material curing characteristics and wall dimensions - of course without the structure collapsing. But he can also calculate how to make the structure with as little material as possible, and what the influence of structural irregularities is. Or what happens when he makes a wall slightly thicker or increases the material curing rate, or uses a completely different material. Or if the wall has a tendency just to fall over or also pulls the connecting structure with it. In the latter case, the consequential damage that occurs clearly is considerably greater. In fact, there are about 15 to 20 factors that one has to take into account, but because Suiker has conveniently scaled his equations, he was ultimately left with just five dimensionless parameters. Hence the problem is tackled with a very elegant and insightful model.

When asked whether his results will be important for the field of 3D printing, Suiker is without doubt. "They should be. The insights provided by the model create essential basic knowledge for everyone who prints 3D structures. For structural designers, engineering firms but also, for example, for companies that print thin-walled plastic prostheses of small dimensions, because that is where my equations also apply." The first interest is already there: he has been invited by Cambridge University to give a seminar lecture about his work.

Suiker validated his model with results of tests done with the 3D concrete printer at Eindhoven University of Technology, carried out by PhD student Rob Wolfs. He developed a computer model at the same time as Suiker, with which he can also calculate the structural behavior during the printing process, but based on the finite-element method (2. It is great for both researchers that the results from their independently developed models confirm each other.

Wolfs' model is different in terms of application. It works well for a detailed analysis of complex problems under specific printing conditions, but due to the purely numerical character and the requested computing time it is not so suitable for identifying the most important effects of the printing process, and for mapping out overall trends.
(1 Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments. A.S.J. Suiker. International Journal of Mechanical Sciences


(2 Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, Cement and Concrete Research


Eindhoven University of Technology

Related Concrete Articles:

When the rubber hits the road: Recycled tires create stronger concrete
UBC engineers have developed a more resilient type of concrete using recycled tires that could be used for concrete structures like buildings, roads, dams and bridges while reducing landfill waste.
A recipe for concrete that can withstand road salt deterioration
Engineers have known for some time that calcium chloride salt, commonly used as deicer, reacts with the calcium hydroxide in concrete to form a chemical byproduct that causes roadways to crumble.
Nanotechnology designed to speed up the hardening of concrete
It has been possible to demonstrate scientifically that tobermorite can be produced at 400 C when above 200 C it had been thought to be impossible.
Russian scientists create new system of concrete building structures
Professor of the Institute of Civil Engineering of Peter the Great Saint-Petersburg Polytechnic University (SPbPU) Andrey Ponomarev and a graduate student Alexander Rassokhin developed a new construction technology.
How to inflate a hardened concrete shell with a weight of 80 tons
At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed.
New laser scanning test to assess fire-damaged concrete
Engineering research at the University of Nottingham, UK, and Ningbo, China, has found laser scanning is a new and viable structural safety technique to detect the damaging effects of fire on concrete.
Decoding cement's shape promises greener concrete
Rice University materials scientists develop techniques to control the microscopic shape of cement particles for the bottom-up manufacture of stronger, more durable and more environmentally friendly concrete.
Dresden-based carbon concrete scientists win the Deutsche Zukunftspreis 2016
TU Dresden's professors Manfred Curbach, Chokri Cherif, and Peter Offermann are the winners of the 'Deutscher Zukunftspreis 2016' (German Future Award).
Concrete jungle functions as carbon sink, UCI and other researchers find
Cement manufacturing is among the most carbon-intensive industrial processes, but an international team of researchers has found that over time, the widely used building material reabsorbs much of the CO2 emitted when it was made.
'Conductive concrete' shields electronics from EMP attack
University of Nebraska engineers Christopher Tuan and Lim Nguyen have developed a cost-effective concrete that shields against intense pulses of electromagnetic energy.

Related Concrete Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".