Nav: Home

More than a well-balanced breakfast: Scientists use egg whites for clean energy production

February 14, 2018

Eggs may soon fuel more than people in the morning. Researchers from the Osaka City University in Japan have developed a way to potentially use egg whites as a substrate to produce a carbon-free fuel.

They published their results on February 2nd in Applied Catalysis B.

"Hydrogen is a promising fuel and energy storage medium because hydrogen emits no global warming gas when used. Nevertheless, hydrogen generation reactions usually require fossil fuels and emit carbon dioxide," said Hiroyasu Tabe, a special appointment research associate at the Graduate School of Engineering at Osaka City University in Japan.

According to Tabe, it would be extremely efficient to use a photocatalyst to speed the reaction of hydrogen generation from a renewable source, such as solar power. Called hydrogen evolution, the gas must be stored and kept from recombining into more common molecules that aren't useful for producing clean fuel.

"Precise accumulation of molecules acting as catalytic components are important to construct a photocatalytic system," Tabe said. "When the molecular components are randomly distributed in the solution or formless compounds, the catalytic reactions cannot proceed."

One promising way to precisely accumulate these catalytic molecules is through the production of pure proteins by cultivated bacteria, but they require special lab equipment. Chicken eggs, however, are well-known vessels of protein-based chemicals, according to Tabe.

The whites of chicken eggs, which are inexpensive and inexhaustible, consist of porous lysozyme crystals.

"Lysozyme crystals have a highly ordered nanostructure and, thus, we can manipulate the molecular components when they accumulate in the crystals," Tabe said, noting that the crystal structure can be easily analyzed with X-ray technology.

This analysis is of particular importance, according to Tabe, because the molecular components within the crystals must be manipulated precisely through what is called cooperative immobilization. This is achieved by the application of rose bengal, which is commonly used as a dye in eye drops to identify damage. In this case, it entered the solvent channels in the lysozyme crystals and accelerated the hydrogen evolution reaction, since the functional molecules and nanoparticles can be accumulated within the crystals' inner spaces.

"These results suggest that porous protein crystals are promising platforms to periodically and rationally accumulate catalytic components by using molecular interactions," Tabe said.
-end-
About Osaka City University

Osaka City University (OCU), the first municipal university to be established in Japan, celebrated its 138th anniversary in 2018. Today, it is the 2nd-largest public university in the country as well as the only comprehensive university within the city of Osaka, the 2nd biggest city in Japan.

OCU is composed of eight faculties and ten graduate schools (Business, Economics, Law, Literature and Human Sciences, Science, Engineering, Medicine, Nursing, Human Life Science,, Urban Management). It has about 8,000 students and 700 academic staff members. OCU has two Nobel Prize winners; Dr. Yoichiro NAMBU and Dr. Shinya YAMANAKA.

As an urban-based university OCU has a special interest in study and research of issues that cities in general. Three of OCU's leading interdisciplinary research areas are in next-generation energy, health science and disaster prevention. OCU is proud of its top-class research reputation that is reflected by the number of research projects granted by the Japanese Ministry of Education, Culture, Sports, Science and Technology.

For further information, please visit http://www.osaka-cu.ac.jp/en

Osaka City University

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"