Nav: Home

The search for dark matter: Axions have ever fewer places to hide

February 14, 2018

If they existed, axions - one of the candidates for particles of the mysterious dark matter - could interact with the matter forming our world, but they would have to do this to a much, much weaker extent than it has seemed up to now. New, rigorous constraints on the properties of axions have been imposed by an international team of scientists responsible for the nEDM experiment.

The latest analysis of measurements of the electrical properties of ultracold neutrons published in the scientific journal Physical Review X has led to surprising conclusions. On the basis of data collected in the nEDM (Electric Dipole Moment of Neutron) experiment, an international group of physicists - including the Cracow-based scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) and the Jagiellonian University - showed in an innovative way that axions, the hypothetical particles that may form cold dark matter, if they existed, would have to comply with much stricter limitations than previously believed with regard to their mass and manners of interacting with ordinary matter. The presented results are the first laboratory data imposing limits on the potential interactions of axions with nucleons (i.e. protons or neutrons) and gluons (the particles bonding quarks in nucleons).

"Measurements of the electric dipole moment of neutrons have been conducted by our international group for a good dozen or so years. For most of this time, none of us suspected that any traces associated with potential particles of dark matter might be hidden in the collected data. Only recently, theoreticians have suggested such a possibility and we eagerly took the opportunity to verify the hypotheses about the properties of axions," says Dr. Adam Kozela (IFJ PAN), one of the participants of the experiment.

The first traces of dark matter were found when analyzing the movements of stars in galaxies and galaxies in galaxy clusters. The pioneer of statistical research on star movements was the Polish astronomer Marian Kowalski. Already in 1859 he noticed that the movements of stars close to us could not be explained solely by the movement of the Sun. This was the first observational premise suggesting the rotation of the Milky Way (Kowalski is thus the man who "shook the foundations" of the galaxy). In 1933, the Swiss Fritz Zwicky went one step further. He analyzed the movements of structures in the Coma galaxy cluster by several methods. He then noticed that they moved as if there were a much larger amount of matter in their surroundings than that seen by astronomers.

Despite decades of searching, the nature of dark matter, which (as background microwave radiation measurements suggest) there should be almost 5.5 times as much of in the Universe as ordinary matter, is still unknown. Theoreticians have constructed a whole plethora of models predicting the existence of particles that are more exotic or less so, that may be responsible for the existence of dark matter. Among the candidates are axions. If they did exist, these extremely light particles would interact with ordinary matter almost exclusively by gravity. Almost, because current models predict that in certain situations a photon could change into an axion, and after some time this would transform back into a photon. This hypothetical phenomenon was and is the basis of the famous "lighting through a wall" experiments. These involve researchers directing an intense beam of laser light onto a thick obstacle, counting on the fact that at least a few photons will change into axions that will penetrate the wall without any major problems. After passing through the wall, some axions could become photons again with features exactly like the photons originally falling on the wall.

Experiments related to measuring the electric dipole moment of neutrons, conducted by a group of researchers from Australia, Belgium, France, Germany, Poland, Switzerland and Great Britain, have nothing to do with photons. The measuring apparatus that was initially located at the Institut Laue-Langevin (ILL) in Grenoble (France) is currently operating at the Laboratory for Particle Physics at the Paul Scherrer Institute (PSI) in Villigen (Switzerland). In experiments that have been conducted for over ten years, scientists measure changes in the frequency of nuclear magnetic resonance (NMR) of neutrons and mercury atoms that are in a vacuum chamber in the presence of electric, magnetic and gravitational fields. These measurements enable conclusions to be drawn about the precession of neutrons and mercury atoms, and consequently on their dipole moments.

To the surprise of many physicists, in recent years theoretical works have appeared that envisage the possibility of axions interacting with gluons and nucleons. Depending on the mass of the axions, these interactions could result in smaller or larger disturbances having a character of oscillations of dipole electrical moments of nucleons, or even whole atoms. The theoreticians' predictions meant that experiments conducted as part of the nEDM cooperation could contain valuable information about the existence and properties of potential particles of dark matter.

"In the data from the experiments at PSI, our colleagues conducting the analysis looked for frequency changes with periods in the order of minutes, and in the results from ILL - in the order of days. The latter would appear if there was an axion wind, that is, if the axions in the near Earth space were moving in a specific direction. Since the Earth is spinning, at different times of the day our measuring equipment would change its orientation relative to the axion wind, and this should result in cyclical, daily changes in the oscillations recorded by us," explains Dr. Kozela.

The results of the search turned out to be negative: no trace of the existence of axions with masses between 10-24 and 10-17 electronvolts were found (for comparison: the mass of an electron is more than half a million electronvolts). In addition, scientists managed to tighten the constraints imposed by theory on the interaction of axions with nucleons by 40 times. In the case of potential interactions with gluons, the restrictions have increased even more, more than one thousand-fold. So then, if axions do exist, in the current theoretical models they have fewer and fewer places to hide.
-end-
The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN) is currently the largest research institute of the Polish Academy of Sciences. The broad range of studies and activities of IFJ PAN includes basic and applied research, ranging from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of methods of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly yield of the IFJ PAN encompasses more than 600 scientific papers in the Journal Citation Reports published by the Thomson Reuters. The part of the Institute is the Cyclotron Centre Bronowice (CCB) which is an infrastructure, unique in Central Europe, to serve as a clinical and research centre in the area of medical and nuclear physics. IFJ PAN is a member of the Marian Smoluchowski Krakow Research Consortium: "Matter-Energy-Future" which possesses the status of a Leading National Research Centre (KNOW) in physics for the years 2012-2017. The Institute is of A+ Category (leading level in Poland) in the field of sciences and engineering.

CONTACTS:

Dr. Adam Kozela
The Institute of Nuclear Physics Polish Academy of Sciences
tel.: +48 12 662 8290, +48 12 662 6120
adam.kozela@ifj.edu.pl

SCIENTIFIC PAPERS:

"Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields" C. Abel et al.
Physical Review X 7, 041034 (2017)
DOI: 10.1103/PhysRevX.7.041034

LINKS:

http://www.ifj.edu.pl/ The website of the Institute of Nuclear Physics Polish Academy of Sciences.

http://press.ifj.edu.pl/ Press releases of the Institute of Nuclear Physics Polish Academy of Sciences.

IMAGES:

IFJ180214b_fot01s.jpg
HR: http://press.ifj.edu.pl/news/2018/02/14/IFJ180214b_fot01.jpg

The distribution of dark matter (colored in blue) in six galaxy clusters, mapped from the visible-light images from the Hubble Space Telescope. (Source: NASA, ESA, STScI, and CXC)

The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

Related Dark Matter Articles:

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
DNA repeats -- the genome's dark matter
First direct analysis of pathogenic sequence repeats in the human genome.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
Physicists have found a way to 'hear' dark matter
Physicists at Stockholm University and the Max Planck Institute for Physics have turned to plasmas in a proposal that could revolutionise the search for the elusive dark matter.
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.