Nav: Home

Cells 'walk' on liquids a bit like geckos

February 14, 2018

Researchers at Queen Mary University of London have discovered that cells can 'walk' on liquids a bit like the way geckos stick to other surfaces.

Cells are typically grown on solid materials, such as tissue culture plastic, degradable polymers and bioceramics. It is thought that the strong mechanical properties of these biomaterials are required to allow cell adhesion, an important process often controlling the behaviour of stem cells and promoting implant incorporation by surrounding tissues and tissue regeneration.

In this study, published in Nano Letters, the researchers report the successful growth of skin cells at the surface of liquid oil droplets.

This is surprising as the low viscosity of liquids is not thought to support the mechanical forces generated by cells during their adhesion.

The research team discovered that protein nanosheets, films only a few nanometres thick, assemble at the surface of such liquids and display strong mechanical properties sufficient to resist cell-generated forces.

By combining different types of mechanical characterisation methods at the nanoscale, they propose that cell adhesion to such liquids is not mediated by surface tension, as in the case of the walking of water striders, but more akin to the adhesion of geckos to a wide range of surfaces, in which shear forces play an important role.

Lead author Dr Julien Gautrot, from Queen Mary's School of Engineering and Materials Science, said: "Understanding the mechanisms responsible for this behaviour is important as it suggests that the nanoscale properties, rather than their bulk properties, controls cell adhesion and potentially other cell behaviour. This will have important implications for the design of a new generation of biomaterials for regenerative medicine and tissue engineering."

He added: "This means that nanoscale properties of biomaterials or tissue engineering scaffolds can be engineered independently of bulk properties to control cell phenotype and scaffold mechanics separately."

Liquid-liquid systems, such as emulsions like a vinaigrette, are particularly advantageous to a wide range of processing and technologies. They are often used in chemical synthesis and chemical engineering where they have revolutionised industrial processes. In contrast, cell culture and stem cell technologies have not benefitted from the flexibility of liquid-liquid systems.

The team suggest the study could lead to the design of a new generation of cell technologies, for the improved production of adherent stem cells for regenerative medicine.
-end-
The study was carried out in collaboration with Umea University, Sweden.

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC) and the Swedish Foundation for International Cooperation in Research and Higher Education.

Queen Mary University of London

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".