Nav: Home

Model of fecal transplantation predicts which bacteria will flourish

February 14, 2018

Fecal microorganism transplant (FMT) is a treatment strategy for illnesses like Clostridium difficile (C. diff) and some other infectious or autoimmune diseases affecting the gut. During FMT, stool from a healthy donor is transferred to a recipient. To be successful, donor bacteria must attach, or engraft, to the recipient's gut, but the forces influencing engraftment and growth have been largely unknown.

In a paper published February 14 in Cell Host & Microbe, scientists provide a statistical model predicting which bacterial strains will engraft after FMT. It is the first predictive strategy for developing a synthetic probiotic--a biologic therapy based on microorganisms acting as a drug. The researchers also found that recipients acquired new bacteria that were previously undetected in both the donor and the recipient, suggesting that the post-FMT microbiome is a mixture of bacterial strains from the donor, recipient, and the environment. In Addition, they learned that the recipient microbiome and immune state also have roles in successful FMT.

"This paper provides a context for understanding how to make these live biological therapeutics as an alternative to transferring raw fecal matter," says co-senior author Eric J. Alm, co-director of the Center for Microbiome Informatics and Therapeutics (CMIT) at MIT. "We describe a model focused on three elements, including bacterial engraftment, growth, and mechanism of action, that need to be considered when developing these live therapies targeting the gut microorganisms, or microbiome," he says.

The scientists studied 20 patients with C. diff infection who received therapeutic FMT. Using high-resolution deep metagenomics genetic sequencing, the scientists studied the gut-level microbiota of donors and recipients before and after FMT up to 4 months. They measured both the strain type and abundance of each strain in donors and recipients to build a predictive model of the presence and the abundance bacterial strains in the recipient after FMT.

After FMT, about 30% of the donor bacteria engrafted in the recipient, and the most abundant strains were more likely to engraft. "That's important to know when designing a microbiome-based therapeutic like this," says the second co-senior author Ramnik J. Xavier, Chief of the Division of Gastroenterology at Massachusetts General Hospital and CMIT co-director.

"If a drug only colonizes 30 percent of the patients you put it in, then the maximum efficacy of your drug is 30 percent." The team detected an unusual "all of nothing" behavior in the 30 percent of engrafted strains. If the donor had five different strains of a bacterial species, for example, all five strains transferred into the patient. They also found that, if the recipient already had some of the strains found in the donor, the probability of those strains engrafting was higher.

From their model, the team showed that the amount of each engrafted strain grown in the recipient could also be predicted.

"Again, that is an essential piece of information because you want to know whether a bacterial strain will be found in trace levels or at high levels so that it can actually produce the metabolite that you want," adds Xavier.

The team developed and applied this model not only to C. diff patients but in other studies with other diseases, including metabolic syndrome.

"We are in the midst of one of the largest disease therapeutics that are being developed based on a human source--bugs within us," says Xavier. "These bugs within us, or the microbiome, are going to have a potential impact for many diseases."
-end-
The genetic sequencing of the bacterial strains was conducted at the Broad Institute of MIT and Harvard, where Alm and Xavier are institutional members.

This work was supported the Crohn's & Colitis Foundation, the Center for Microbiome Informatics and Therapeutics, and the National Institutes of Health.

Cell Host & Microbe, Smillie et al: "Strain-tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation" http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(18)30038-6

Cell Host & Microbe (@cellhostmicrobe), published by Cell Press, is a monthly journal that publishes novel findings and translational studies related to microbes (which include bacteria, fungi, parasites, and viruses). The unifying theme is the integrated study of microbes in conjunction and communication with each other, their host, and the cellular environment they inhabit. Visit: http://www.cell.com/cell-host-microbe. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".