Nav: Home

How seafloor weathering drives the slow carbon cycle

February 14, 2018

A previously unknown connection between geological atmospheric carbon dioxide cycles and the fluctuating capacity of the ocean crust to store carbon dioxide has been uncovered by two geoscientists from the University of Sydney.

Prof Dietmar Müller and Dr Adriana Dutkiewicz from the Sydney Informatics Hub and the School of Geosciences report their discovery in the journal Science Advances.

Many of us are familiar with the Slow Movement philosophy, which includes slow living, slow cooking, slow fashion, and even slow TV. But most of us would not have heard of the slow carbon cycle, which is about the slow movement of carbon between the solid Earth and the atmosphere.

The slow carbon cycle predates humans and takes place over tens of millions of years, driven by a series of chemical reactions and tectonic activity. The slow carbon cycle is part of Earth's life insurance, as it has maintained the planet's habitability throughout a series of hothouse climates punctuated by ice ages.

One idea is that when atmospheric carbon dioxide rises, the weathering of continental rock exposed to the atmosphere increases, eventually drawing down carbon dioxide and cooling the Earth again.

Less well-known is that weathering exists in the deep oceans too. Young, hot, volcanic ocean crust is subject to weathering from the circulation of seawater through cracks and open spaces in the crust. Minerals such as calcite, which capture carbon in their structure, gradually form within the crust from the seawater.

Recent work has shown that the efficiency of this seafloor weathering process depends on the temperature of the water at the bottom of the ocean--the hotter it is, the more carbon dioxide gets stored in the ocean crust.

Prof Müller explains: "To find out how this process contributes to the slow carbon cycle, we reconstructed the average bottom water temperature of the oceans through time, and plugged it into a global computer model for the evolution of the ocean crust over the past 230 million years. This allowed us to compute how much carbon dioxide is stored in any new chunk of crust created by seafloor spreading."

Dr Dutkiewicz adds: "Our plate tectonic model also allows us to track each package of ocean floor until it eventually reaches its final destination--a subduction zone. At the subduction zone, the crust and its calcite are recycled back into the Earth's mantle, releasing a portion of the carbon dioxide into the atmosphere through volcanoes."

The computer model reveals that the capacity of the ocean crust to store carbon dioxide changes through time with a regular periodicity of about 26 million years.

Several geological phenomena including extinctions, volcanism, salt deposits and atmospheric carbon dioxide fluctuations reconstructed independently from the geological record all display 26 million-year cycles.

A previous hypothesis had attributed these fluctuations to cycles of cosmic showers, thought to reflect the Solar System's oscillation about the plane of the Milky Way Galaxy.

Prof Müller says: "Our model suggests that characteristic 26 million-year periodicity in the slow carbon cycle is instead driven by fluctuations in seafloor spreading rates that in turn alter the capacity of the ocean crust to store carbon dioxide. This raises the next question: what ultimately drives these fluctuations in crustal production?"

Subduction, the sinking of tectonic plates deep into the convecting mantle, is regarded as the dominant plate driving force of plate tectonics. It follows that cyclicities in seafloor spreading rates should be driven by equivalent cycles in subduction.

An analysis of subduction zone behaviour suggests that the driving force in the 26 million-year periodicity originates from an episodicity in subduction zone migration. This component of the slow carbon cycle needs to be built into global carbon cycle models.

Better understanding of the slow carbon cycle will help us predict how the Earth will react to the human-induced rise in atmospheric carbon dioxide. It will help us answer the question: To what extent will the continents, oceans and the ocean crust take up the extra carbon dioxide in the long run?
-end-


University of Sydney

Related Plate Tectonics Articles:

The birth and death of a tectonic plate
Geophysicist Zachary Eilon developed a new technique to investigate the underwater volcanoes that produce Earth's tectonic plates
Experts explain origins of topographic relief on Earth, Mars and Titan
The surfaces of Earth, Mars, and Titan, Saturn's largest moon, have all been scoured by rivers.
Scientists describe origins of topographic relief on Titan
Fluid erosion has carved river networks in at least three bodies in our solar system in the form of water on Earth and Mars and liquid hydrocarbons on Titan.
Southern Italy: Earthquake hazard due to active plate boundary
Tectonically, the Mediterranean is extremely active and thus threatened by natural catastrophes.
Release of water shakes Pacific Plate at depth
A team of seismologists analyzing the data from 671 earthquakes that occurred between 30 and 280 miles beneath the Earth's surface in the Pacific Plate as it descended into the Tonga Trench were surprised to find a zone of intense earthquake activity in the downgoing slab.
SLU geologists discover how a tectonic plate sank
Saint Louis University researchers report new information about conditions that can cause the Earth's tectonic plates to sink into the Earth.
The evolution of antibiotic resistance, on a plate
Researchers have developed a large culturing device to track the evolution of bacteria as they mutate in the presence of antibiotics, revealing that, surprisingly, the fittest mutants were not those most likely to infiltrate higher antibiotic concentrations.
Crystallization plate provides clues on protein structure aboard historic space mission
A new crystallization plate, developed and tested at the Cornell High Energy Synchrotron Source, or CHESS, hitched a ride to outer space and is helping a major drugmaker learn about protein structure.
New insights on the relationship between erosion and tectonics in the Himalayas
Can processes unfolding at the Earth's surface be strong enough to influence tectonics?
Earth's mantle appears to have a driving role in plate tectonics
Deep down below us is a tug of war moving at less than the speed of growing fingernails.

Related Plate Tectonics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".