Nav: Home

New method to replicate harsh conditions for materials

February 14, 2018

Confining a plasma jet can be stress-inducing... especially on the materials especially for shielding materials. Noting the limits inherent in the test methods currently used for these materials, Professor Patrizio Antici and his colleagues have proposed a ground-breaking new solution: using laser-accelerated particles to stress test materials subject to harsh conditions. Recently published in the journal Nature Communications, his method holds promise for a number of applications.

In a myriad of domains characterized by exposure to high energy, materials are subjected to intense stress. No matter what the high-energy application--aerospace, nuclear power plants, certain research equipment--the ability of materials to withstand the physical stress imposed on them must be assessed to avoid breakage.

As Professor Antici himself works with state-of-the-art equipment that has to be protected at all costs from premature wear and tear, he wanted to evaluate the effectiveness of laser-accelerated particles in inducing controlled stress on materials. His method was to focus a particle beam on tungsten, graphite, titanium, tantalum, and molybdenum, all materials employed in facilities using plasma or for inertial or magnetic confinement fusion.

Currently, several methods are used to simulate wear and tear and measure the strength of these materials, but typically they provide only a partial picture, require longer protocols and are hard to model. Patrizio Antici's high-energy experiments demonstrate that the laser-generated proton beam can reproduce damage equivalent to several months of full operation of facilities producing a harsh environment for materials. The tests are also much faster since they can be performed with more compact instruments and in a few single laser shots and allow - compared to conventional methods - to more accurately reproduce the exact operational environment to which materials are subjected.

The innovative method, which reproduces mechanical, electrical, and optical stress on five materials, can be used to improve facilities that experience conditions warranting increased protection.
Original article: doi:10.1038/s41467-017-02675-x

Institut national de la recherche scientifique - INRS

Related Stress Articles:

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
Beware of evening stress
Stressful events in the evening release less of the body's stress hormones than those that happen in the morning, suggesting possible vulnerability to stress in the evening.
More Stress News and Stress Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...