Merging neutron stars

February 14, 2019

The option to measure the gravitational waves of two merging neutron stars has offered the chance to answer some of the fundamental questions about the structure of matter. At the extremely high temperatures and densities in the merger scientists conjecture a phase-transition where neutrons dissolve into their constituents: quarks and gluons. In the current issue of Physical Review Letters, two international research groups report on their calculations of what the signature of such a phase transition in a gravitational wave would look like.

Quarks, the smallest building-blocks of matter, never appear alone in nature. They are always tightly bound inside the protons and neutrons. However, neutron stars, weighing as much as the Sun, but being just the size of a city like Frankfurt, possess a core so dense that a transition from neutron matter to quark matter may occur. Physicists refer to this process as a phase transition, similar to the liquid-vapor transition in water. In particular, such a phase transition is in principle possible when merging neutron stars form a very massive meta-stable object with densities exceeding that of atomic nuclei and with temperatures 10,000 times higher than in the Sun's core.

The measurement of gravitational waves emitted by merging neutron stars could serve as a messenger of possible phase transitions in outer space. The phase transition should leave a characteristic signature in the gravitational-wave signal. The research groups from Frankfurt, Darmstadt and Ohio (Goethe University/FIAS/GSI/Kent University) as well as from Darmstadt and Wroclaw (GSI/Wroclaw University) used modern supercomputers to calculate what this signature could look like. For this purpose, they used different theoretical models of the phase transition.

In case a phase transition takes place more after the actual merger, small amounts of quarks will gradually appear throughout the merged object. "With aid of the Einstein equations, we were able to show for the first time that this subtle change in the structure will produce a deviation in the gravitational-wave signal until the newly formed massive neutron star collapses under its own weight to form a black hole," explains Luciano Rezzolla, who is a professor for theoretical astrophysics at the Goethe University.

In the computer models of Dr. Andreas Bauswein from GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt a phase transition already happens directly after the merger -- a core of quark matter forms in the interior of the central object. "We succeeded to show that in this case there will be a distinct shift in the frequency of the gravitational wave signal," says Bauswein. "Thus, we identified a measurable criterion for a phase transition in gravitational waves of neutron star mergers in the future."

Not all of the details of the gravitational-wave signal are measurable with current detectors yet. However, they will become observable both with the next generation of detectors, as well as with a merger event relatively close to us. A complementary approach to answer the questions about quark matter is offered by two experiments: By colliding heavy ions at the existing HADES setup at GSI and at the future CBM detector at the Facility for Antiproton and Ion Research (FAIR), which is currently under construction at GSI, compressed nuclear matter will be produced. In the collisions, it might be possible to create temperatures and densities that are similar to those in a neutron-star merger. Both methods give new insights into the occurrence of phase transitions in nuclear matter and thus into its fundamental properties.
-end-


Helmholtz Association

Related Gravitational Waves Articles from Brightsurf:

Weak equivalence principle violated in gravitational waves
New research published in EPJ C proves theoretically that the Weak Equivalence Principle can be violated by quantum particles in gravitational waves - the ripples in spacetime caused by colossal events such as merging black holes.

Remembrance of waves past: memory imprints motion on scattered waves
Now, it appears that between relativity and the classical (stationary) wave regime, there exists another regime of wave phenomena, where memory influences the scattering process.

New populations of black holes revealed by gravitational waves
The gravitational wave detectors LIGO and Virgo have just chalked up their biggest catch yet, a black hole 142 times the mass of the Sun, resulting from the merger of two ''lighter'' black holes.

Tabletop quantum experiment could detect gravitational waves
Tiny diamond crystals could be used as an incredibly sensitive and small gravitational detector capable of measuring gravitational waves, suggests new UCL-led research.

Gravitational waves could prove the existence of the quark-gluon plasma
According to modern particle physics, matter produced when neutron stars merge is so dense that it could exist in a state of dissolved elementary particles.

X-rays and gravitational waves will combine to illuminate massive black hole collisions
A new study by a group of researchers at the University of Birmingham has found that collisions of supermassive black holes may be simultaneously observable in both gravitational waves and X-rays at the beginning of the next decade.

Quantum expander for gravitational-wave observatories
Gravitational-wave detectors use ultra-stable laser light stored in optical cavities to achieve the high sensitivity for detecting gravitational-wave signals from merging binary black holes and neutron stars.

Gravitational lensing provides a new measurement of the expansion of the universe
Amid ongoing uncertainty around the value of the Hubble Constant, uncertainty largely created by issues around measuring distances to objects in the galaxy, scientists who used a new distance technique have derived a different Hubble value, one 'somewhat higher than the standard value,' as Tamara Davis describes it in a related Perspective.

Gravitational waves leave a detectable mark, physicists say
New research shows that gravitational waves leave behind plenty of 'memories' that could help detect them even after they've passed.

DIY gravitational waves with 'BlackHoles@Home'
Researchers hoping to better interpret data from the detection of gravitational waves generated by the collision of binary black holes are turning to the public for help.

Read More: Gravitational Waves News and Gravitational Waves Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.