Nav: Home

Controlling and visualizing receptor signals in neural cells with light

February 14, 2019

Using a novel optogenetic tool, researchers have successfully controlled, reproduced and visualised serotonin receptor signals in neural cells. To this end, they modified a photosensitive membrane receptor in the eye, namely melanopsin. As a result, they were able to switch the receptor on and off using light; it also acted like a sensor indicating via fluorescence if specific signalling pathways in the cell had been activated. The sensor was, moreover, specifically designed to migrate to those domains in the neural cells that are sensitive to the neurotransmitter serotonin. The team from Ruhr-Universität Bochum, headed by Dennis Eickelbeck and Professor Stefan Herlitze, described its project in the journal Nature Communications Biology on 14 February 2019.

Activating signalling pathways with light

Melanospin is a G-protein-coupled receptor capable of controlling specific signalling pathways in the cells. In earlier studies, the team at the Department of General Zoology and Neurobiology in Bochum had deployed the receptor as an optogenetic tool. Having modified the receptor, the biologists were able to switch it on with blue light and off with yellow light. Thus, they could activate various G-protein-coupled signalling pathways in neural cells using light.

In their current study, the researchers optimised the tool and turned it into a sensor that indicates if a G-protein-coupled signalling pathway has been switched on. The trick: once such a signalling pathway is activated, the concentration of calcium ions in the cell increases. The researchers melded melanopsin with a calcium indicator protein, whose fluorescence intensity increases following an increase in calcium concentration in the cell. Green light thus indicated that a G-protein-coupled signalling pathway had been activated.

Dual colour code

Subsequently, the biologists added two more functions to their sensor, i.e. the calcium-melanopsin-local-sensor, Camello for short. They integrated a second fluorescent protein that permanently emits red fluorescence. Monitoring the red light, they were able to pinpoint the sensor in the cells, regardless if a signalling pathway was switched on or not. A red light thus indicated that the Camello sensor was present, whereas an additional green light showed that it had activated signalling pathways.

Receptor trafficking in specific domains

Finally, the researchers added a fragment of a serotonin receptor to Camello. As a result, the sensor was trafficked to those domains of the cell where serotonin receptors occur naturally. "Since serotonin is involved in numerous processes in the central nervous system, it also plays an important role in many disorders, such as depression, schizophrenia, anxiety and migraine. We are hoping that, by facilitating detailed research into the transport, localisation and activity of relevant receptors, our tool will help us understand the mechanisms underlying these diseases," says Dennis Eickelbeck.
-end-
Cooperation partners

For the purpose of the study, the Department of General Zoology and Neurobiology collaborated with colleagues from the Developmental Neurobiology research group, the Neural Computation Institute, and the Department of Biophysics at Ruhr-Universität Bochum.

Ruhr-University Bochum

Related Serotonin Articles:

Settling the debate on serotonin's role in sleep
New research finds that serotonin is necessary for sleep, settling a long-standing controversy.
Whole grain can contribute to health by changing intestinal serotonin production
Adults consuming whole grain rye have lower plasma serotonin levels than people eating low-fibre wheat bread, according to a recent study by the University of Eastern Finland and the International Agency for Research on Cancer (IARC).
Serotonin boosts neuronal powerplants protecting against stress
Research from the Vaidya and Kolthur-Seetharam groups (TIFR) shows that the neurotransmitter serotonin enhances the production and functions of neuronal mitochondria, the powerhouse of the cell, and protect against stress.
Fight or flight: Serotonin neurons prompt brain to make the right call
Known for its role in relieving depression, the neurochemical serotonin may also help the brain execute instantaneous, appropriate behaviors in emergency situations, according to a new Cornell study published Feb.
New images show serotonin activating its receptor for first time
A team of researchers from Case Western Reserve University School of Medicine have used high-powered microscopes to view serotonin activating its receptor for the first time.
More Serotonin News and Serotonin Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...