Nav: Home

'Lack of cleaning' in brain cells is central to Alzheimer's disease

February 14, 2019

Scientists around the world are still struggling to understand Alzheimer's better in order to be able to treat and potentially prevent the development of the debilitating disease in the future. No new medications have been approved during recent years.

In a new study in the scientific journal Nature Neuroscience, an international team of researchers from the University of Copenhagen, National Institutes of Health and the University of Oslo among others have come closer to a new way of attacking the disease. They target the efforts towards the cleaning process in the brain cells called mitophagy.

'When the cleaning system does not work properly, there will be an accumulation of defective mitochondria in the brain cells. And this may be really dangerous. At any rate, the poor cleaning system is markedly present in cells from both humans and animals with Alzheimer's. And when we improve the cleaning in live animals, their Alzheimer's symptoms almost disappear,' says Vilhelm Bohr, author of the study and affiliate professor at the Center for Healthy Aging and National Institutes of Health.

Defect Energy Factories

The researchers have looked more closely at the cleaning process in brain cells from deceased Alzheimer's patients, in Alzheimer's-induced stem cells and in live mice and roundworms with Alzheimer's. In addition, they have also tested active substances targeted at the cleaning process in the animal models.

'It significantly strengthens our results that the cleaning process seems to be important in both human cells and across different animal species. And then it is encouraging that in living animals we are able to improve the central Alzheimer's symptoms, memory and learning,' says Vilhelm Bohr.

The mitochondria lie inside the cell and can be seen as the cell's energy factories. Mitophagy breaks down defective mitochondria and reuses the proteins that they consist of. It is known from previous research that dysfunctional mitophagy is associated with poor function and survival of nerve cells, but so far, no connection with Alzheimer's has been shown.

Slowing Down the Accumulation

In both Alzheimer's and other states of dementia, there is an accumulation of the proteins tau and beta amyloid in the brain, leading to cell death. In the new animal models, the researchers show that when boosting the mitophagy, such accumulation will slow down.

The researchers believe that altogether their findings indicate that the cleaning process is a potential target for the treatment of Alzheimer's, which should be further investigated. They therefore plan to start clinical trials in humans in the near future.
-end-
The study is supported by Helse Sør Øst RHF (the Southern and Eastern Norway Regional Health Authority), the Research Council of Norway, the ERC and the Olav Thon Foundation.

The research at the Center for Healthy Aging is supported by Nordea-Fonden.

The researchers behind the study have a research and development agreement with ChromaDex and Elysium Health.

Read the entire study 'Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease' in Nature Neuroscience.

University of Copenhagen The Faculty of Health and Medical Sciences

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".