Nav: Home

Making better embryos

February 14, 2019

One out of every six Canadian couples experiences infertility. Some resort to in vitro fertilization. But the embryos obtained through this technique often have defects. In a study published today in the journal Current Biology, researchers from the University of Montreal Hospital Research Centre (CRCHUM) succeeded in reducing the number of defects in mouse embryos in the laboratory. In the medium term, this unprecedented discovery could improve infertile couples' chances of giving birth.

About half of the embryos generated during in vitro fertilization fertility treatments contain cells with an abnormal number of chromosomes. This abnormality, called aneuploidy, is well known in reproductive biology and is considered a major cause of infertility.

"In our study, we explain at least one of the reasons why this occurs. We found that it's due to a defect in a mechanism called the "spindle checkpoint." We also show that if we manipulate this checkpoint in mouse embryos by using a simple drug, we can reduce the chances of error by about half," explained Dr. Greg FitzHarris, CRCHUM researcher and professor at the Université de Montréal.

By administering the right dose of this synthetic substance called proTAME, researchers observed that a larger percentage of cells of each of the mouse embryos had a normal number of chromosomes. In mice, a normal oocyte (ovum) contains 20 chromosomes, whereas in humans it contains 23.

Hope for humans?

Making the best possible embryo is one of the keys to success when it comes to in vitro fertilization.

This discovery is still at the basic research stage, being conducted in the laboratory on mice. Greg FitzHarris emphasizes that it's very important to be cautious about its application to humans.

"The potential for transferring the technique to humans is clear. And I'm sure that fertility clinics would really like to try it in the hope of creating 'better embryos.' However, it would be very irresponsible to implement this concept clinically at this point, before safety tests have been successfully carried out," emphasized the researcher.
-end-
The results of this study were the subject of a provisional patent application US 62/729,090 entitled "Method of reducing chromosome segregation error in cells of the early embryo" filed September 20, 2018.

To read: "Cell size-independent spindle checkpoint failure underlies chromosome segregation error in mouse embryos" par Cayetana Vázquez-Diez et al. in Current Biology. DOI: 10.1016/j.cub.2018.12.042

Information and statistics on fertility: Public Health Agency of Canada website

About the CRCHUM

The University of Montreal Hospital Research Centre (CRCHUM) is one of North America's leading hospital research centres. It strives to improve adult health through a research continuum covering such disciplines as the fundamental sciences, clinical research and public health. Over 1,861 people work at the CRCHUM, including 542 scientists and 719 students and research assistants.

chumontreal.qc.ca/crchum

About Université de Montréal

Deeply rooted in Montréal and dedicated to its international mission, Université de Montréal is one of the top universities in the French-speaking world. Founded in 1878, Université de Montréal today has 16 faculties and schools, and together with its two affiliated schools, HEC Montréal and Polytechnique Montréal, constitutes the largest centre of higher education and research in Québec and one of the major centres in North America. It brings together 2,500 professors and researchers and welcomes more than 60,000 students.

umontreal.ca

University of Montreal Hospital Research Centre (CRCHUM)

Related Chromosomes Articles:

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.
Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.
Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.
X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.
How chromosomes change their shape during cell differentiation
Scientists from the RIKEN Center for Biosystems Dynamics Research have provided an explanation of how chromosomes undergo structural changes during cell differentiation.
Key similarities discovered between human and archaea chromosomes
A study led by Indiana University is the first to reveal key similarities between chromosomes in humans and archaea.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Human artificial chromosomes bypass centromere roadblocks
Human artificial chromosomes (HACs) could be useful tools for both understanding how mammalian chromosomes function and creating synthetic biological systems, but for the last 20 years, they have been limited by an inefficient artificial centromere.
Does rearranging chromosomes affect their function?
Molecular biologists long thought that domains in the genome's 3D organization control how genes are expressed.
Super-resolution microscopy illuminates associations between chromosomes
Thanks to super-resolution microscopy, scientists have now been able to unambiguously identify physical associations between human chromosomes.
More Chromosomes News and Chromosomes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.