Nav: Home

Making better embryos

February 14, 2019

One out of every six Canadian couples experiences infertility. Some resort to in vitro fertilization. But the embryos obtained through this technique often have defects. In a study published today in the journal Current Biology, researchers from the University of Montreal Hospital Research Centre (CRCHUM) succeeded in reducing the number of defects in mouse embryos in the laboratory. In the medium term, this unprecedented discovery could improve infertile couples' chances of giving birth.

About half of the embryos generated during in vitro fertilization fertility treatments contain cells with an abnormal number of chromosomes. This abnormality, called aneuploidy, is well known in reproductive biology and is considered a major cause of infertility.

"In our study, we explain at least one of the reasons why this occurs. We found that it's due to a defect in a mechanism called the "spindle checkpoint." We also show that if we manipulate this checkpoint in mouse embryos by using a simple drug, we can reduce the chances of error by about half," explained Dr. Greg FitzHarris, CRCHUM researcher and professor at the Université de Montréal.

By administering the right dose of this synthetic substance called proTAME, researchers observed that a larger percentage of cells of each of the mouse embryos had a normal number of chromosomes. In mice, a normal oocyte (ovum) contains 20 chromosomes, whereas in humans it contains 23.

Hope for humans?

Making the best possible embryo is one of the keys to success when it comes to in vitro fertilization.

This discovery is still at the basic research stage, being conducted in the laboratory on mice. Greg FitzHarris emphasizes that it's very important to be cautious about its application to humans.

"The potential for transferring the technique to humans is clear. And I'm sure that fertility clinics would really like to try it in the hope of creating 'better embryos.' However, it would be very irresponsible to implement this concept clinically at this point, before safety tests have been successfully carried out," emphasized the researcher.
-end-
The results of this study were the subject of a provisional patent application US 62/729,090 entitled "Method of reducing chromosome segregation error in cells of the early embryo" filed September 20, 2018.

To read: "Cell size-independent spindle checkpoint failure underlies chromosome segregation error in mouse embryos" par Cayetana Vázquez-Diez et al. in Current Biology. DOI: 10.1016/j.cub.2018.12.042

Information and statistics on fertility: Public Health Agency of Canada website

About the CRCHUM

The University of Montreal Hospital Research Centre (CRCHUM) is one of North America's leading hospital research centres. It strives to improve adult health through a research continuum covering such disciplines as the fundamental sciences, clinical research and public health. Over 1,861 people work at the CRCHUM, including 542 scientists and 719 students and research assistants.

chumontreal.qc.ca/crchum

About Université de Montréal

Deeply rooted in Montréal and dedicated to its international mission, Université de Montréal is one of the top universities in the French-speaking world. Founded in 1878, Université de Montréal today has 16 faculties and schools, and together with its two affiliated schools, HEC Montréal and Polytechnique Montréal, constitutes the largest centre of higher education and research in Québec and one of the major centres in North America. It brings together 2,500 professors and researchers and welcomes more than 60,000 students.

umontreal.ca

University of Montreal Hospital Research Centre (CRCHUM)

Related Chromosomes Articles:

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.
How chromosomes change their shape during cell differentiation
Scientists from the RIKEN Center for Biosystems Dynamics Research have provided an explanation of how chromosomes undergo structural changes during cell differentiation.
Key similarities discovered between human and archaea chromosomes
A study led by Indiana University is the first to reveal key similarities between chromosomes in humans and archaea.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Human artificial chromosomes bypass centromere roadblocks
Human artificial chromosomes (HACs) could be useful tools for both understanding how mammalian chromosomes function and creating synthetic biological systems, but for the last 20 years, they have been limited by an inefficient artificial centromere.
Does rearranging chromosomes affect their function?
Molecular biologists long thought that domains in the genome's 3D organization control how genes are expressed.
Super-resolution microscopy illuminates associations between chromosomes
Thanks to super-resolution microscopy, scientists have now been able to unambiguously identify physical associations between human chromosomes.
B chromosome first -- mechanisms behind the drive of B chromosomes uncovered
B chromosomes are supernumerary chromosomes, which often are preferentially inherited and showcase an increased transmission rate.
Dark centers of chromosomes reveal ancient DNA
Geneticists exploring the dark heart of the human genome have discovered big chunks of Neanderthal and other ancient DNA.
Reading the dark heart of chromosomes
A new study publishing May 14, 2019 in the open-access journal PLOS Biology by the Mellone lab at the University of Connecticut and the Larracuente lab at the University of Rochester combine cutting-edge sequencing technology with molecular and high-resolution microscopy methods to discover the sequences of all centromeres in the fruit fly Drosophila melanogaster, a powerful model organism widely used in biomedical research.
More Chromosomes News and Chromosomes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.