Nav: Home

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international team that includes University College London (UCL) and Flatiron Institute cosmologists.

The cosmos has been expanding for 13.8 billion years. Its present rate of expansion, known as "the Hubble constant," gives the time elapsed since the Big Bang.

However, the two best methods used to measure the Hubble constant have conflicting results, which suggests that our understanding of the structure and history of the universe--the "standard cosmological model"--may be incorrect.

The study, published today in Physical Review Letters, shows how new independent data from gravitational waves emitted by binary neutron stars called "standard sirens" will break the deadlock between the conflicting measurements once and for all.

"We've calculated that by observing 50 binary neutron stars over the next decade, we will have sufficient gravitational wave data to independently determine the best measurement of the Hubble constant," said lead author Dr. Stephen Feeney of the Center for Computational Astrophysics at the Flatiron Institute in New York City. "We should be able to detect enough mergers to answer this question within five to 10 years."

The Hubble constant, the product of work by Edwin Hubble and Georges Lemaître in the 1920s, is one of the most important numbers in cosmology. The constant "is essential for estimating the curvature of space and the age of the universe, as well as exploring its fate," said study co-author UCL Professor of Physics & Astronomy Hiranya Peiris.

"We can measure the Hubble constant by using two methods--one observing Cepheid stars and supernovae in the local universe, and a second using measurements of cosmic background radiation from the early universe--but these methods don't give the same values, which means our standard cosmological model might be flawed."

Feeney, Peiris and colleagues developed a universally applicable technique that calculates how gravitational wave data will resolve the issue.

Gravitational waves are emitted when binary neutron stars spiral toward each other before colliding in a bright flash of light that can be detected by telescopes. UCL researchers were involved in detecting the first light from a gravitational wave event in August 2017.

Binary neutron star events are rare, but they are invaluable in providing another route to track how the universe is expanding. The gravitational waves they emit cause ripples in space-time that can be detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo experiments, giving a precise measurement of the system's distance from Earth.

By additionally detecting the light from the accompanying explosion, astronomers can determine the system's velocity, and hence calculate the Hubble constant using Hubble's law.

For this study, the researchers modelled how many such observations would be needed to resolve the issue of measuring the Hubble constant accurately.

"This in turn will lead to the most accurate picture of how the universe is expanding and help us improve the standard cosmological model," concluded Professor Peiris.
The study involved researchers from the Flatiron Institute (USA), UCL, Stockholm University, Radboud University (The Netherlands), Imperial College London, and the University of Chicago. UCL's contribution was generously funded by the European Research Council.


The Flatiron Institute is the research division of the Simons Foundation. Its mission is to advance scientific research through computational methods, including data analysis, theory, modelling, and simulation. The institute's Center for Computational Astrophysics creates new computational frameworks that allow scientists to analyze big astronomical datasets and to understand complex, multi-scale physics in a cosmological context.

Simons Foundation

Related Gravitational Waves Articles:

X-rays and gravitational waves will combine to illuminate massive black hole collisions
A new study by a group of researchers at the University of Birmingham has found that collisions of supermassive black holes may be simultaneously observable in both gravitational waves and X-rays at the beginning of the next decade.
Quantum expander for gravitational-wave observatories
Gravitational-wave detectors use ultra-stable laser light stored in optical cavities to achieve the high sensitivity for detecting gravitational-wave signals from merging binary black holes and neutron stars.
Gravitational lensing provides a new measurement of the expansion of the universe
Amid ongoing uncertainty around the value of the Hubble Constant, uncertainty largely created by issues around measuring distances to objects in the galaxy, scientists who used a new distance technique have derived a different Hubble value, one 'somewhat higher than the standard value,' as Tamara Davis describes it in a related Perspective.
Gravitational waves leave a detectable mark, physicists say
New research shows that gravitational waves leave behind plenty of 'memories' that could help detect them even after they've passed.
DIY gravitational waves with 'BlackHoles@Home'
Researchers hoping to better interpret data from the detection of gravitational waves generated by the collision of binary black holes are turning to the public for help.
Gravitational waves will settle cosmic conundrum
Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international team that includes University College London (UCL) and Flatiron Institute cosmologists.
LIGO and Virgo announce four new gravitational-wave detections
The LIGO and Virgo collaborations have now confidently detected gravitational waves from a total of 10 stellar-mass binary black hole mergers and one merger of neutron stars, which are the dense, spherical remains of stellar explosions.
Gravitational waves from a merged hyper-massive neutron star
For the first time astronomers have detected gravitational waves from a merged, hyper-massive neutron star.
Gravitational waves could shed light on dark matter
Black holes colliding, gravitational waves riding through space-time - and a huge instrument that allows scientists to investigate the fabric of the universe.
In five -10 years, gravitational waves could accurately measure universe's expansion
In a new paper published in Nature, three University of Chicago scientists estimate that given how quickly LIGO researchers saw the first neutron star collision, they could have a very accurate measurement of the rate of the expansion of the universe within five to ten years.
More Gravitational Waves News and Gravitational Waves Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at