Nav: Home

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay

February 14, 2019

Researchers have developed a near weightless material, comprised mostly of air, capable of both withstanding and protecting against some of the most extreme temperatures experienced in aerospace and industrial environments. It performed well when heated to 900 °Celsius (C) and then rapidly cooled to -198 °C, the authors say. Their new ceramic aerogel is engineered with unusual double-negative-index properties and demonstrates exceptional structural stability and superinsulation, making it an ideal material to be used in demanding applications like the heat shields on space vehicles. Aerogels are a composite material made mostly of air encompassed within a network of a solid medium, such as ceramic, metal, or carbon. Ceramic aerogels are incredibly lightweight and possess traits highly desired for enduring demanding environments. However, most conventional ceramic aerogels are brittle and susceptible to degradation due to extended high-temperature exposure or large and rapid temperature swings. According to the authors, these issues have greatly limited the use of ceramic aerogels as a super-insulating material. Xiang Xu and colleagues report on the design of a unique ceramic aerogel created using atomically thin sheets of hexagonal boron nitride (h-BN). By carefully engineering the ceramic aerogel microstructure, Xu et al. were able to achieve both a negative Poisson's ratio (a measure of a material's tendency to bulge outward when compressed) as well as a negative thermal expansion coefficient. To assess the material's mechanical and thermal capabilities, the authors ran a series of tests, including heating the aerogel to 900 °C and then rapidly cooling it -198 °C repeatedly, and at a rate of 275 °C per second. Xu et al. also evaluated the effect of long-term temperature stress by exposing the material to temperatures approaching 1500 °C in a vacuum. According to the results, the aerogel remained largely unchanged with near-zero strength loss following the rigorous trials. Manish Chhowalla and Deep Jariwala discuss the potential of the aerogel in a related Perspective.

American Association for the Advancement of Science

Related Temperature Articles:

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
Thermal siphon effect: heat flows from low temperature to high temperature
In this work, researchers study (both thermal and electric) energy transport in physical networks that rewired from 2D regular lattices.
Despite temperature shifts, treehoppers manage to mate
A rare bright spot among dismal climate change predictions, new research findings show that some singing insects are likely to manage to reproduce even in the midst of potentially disruptive temperature changes.
Precise temperature measurements with invisible light
NIST researchers have invented a portable, remarkably stable thermometer capable of measuring temperatures to a precision of within a few thousandths of a degree Celsius.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Scientists identify how plants sense temperature
A UC Riverside researcher is leading a team exploring how plants respond to temperature.
Responses of benthic foraminifera to changes of temperature and salinity
Benthic foraminifera is numerous single-celled protozoan species that showed high sensitivity to environmental changes.
High-temperature electronics? That's hot
A new organic polymer blend allows plastic electronics to function in high temperatures without sacrificing performance.
How to melt gold at room temperature
When the tension rises, unexpected things can happen -- not least when it comes to gold atoms.
Body temperature regulation: how fever comes
Researchers from Kanazawa University report in Journal of Neuroscience performed a microdialysis study on mice to determine mechanisms underlying the inflammatory response in the brain associated with fever that might be used to develop new strategies for treatment.
More Temperature News and Temperature Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at