Nav: Home

Revealed: The gut microbe source of a carcinogenic, DNA-smashing genotoxin

February 14, 2019

A new study provides the first direct evidence of how a genotoxic warhead that can target and destroy the DNA of nearby cells renders its carcinogenic effects. The results identify a potential biomarker for assessing colorectal cancer risk. Among the many microbes that inhabit our gut, some strains of Escherichia coli (E. coli) produce colibactin. Colibactin is thought to be a product of E. coli strains containing a biosynthetic gene cluster known as the pks island. Exposure to the genotoxin colibactin has been shown to cause severe genetic damage in mammalian cells by breaking strands of DNA apart, inducing increased rates of gene mutation and tumor growth. Furthermore, previous research has demonstrated that pks+ E. coli is found with greater frequency in patients with colorectal conditions, including colorectal cancer. However, despite its links to human cancer, the chemical nature of the genotoxin, its pro-carcinogenic role or how it gets into the cells it destroys has remained elusive for over a decade, according to the authors. Due to its instability and low concentration, isolating the genotoxin has remained a challenge. Most attempts have been limited to identifying the stable precursors of colibactin and using synthetic "colibactin mimics" in vitro. Here, Matthew Wilson and colleagues combine chemical synthesis with a newly developed untargeted mass-spectrometry-based approach - LC-MS3 DNA adductomics - and identified two chemical products left over after colibactin-mediated DNA damage in living human cells. According to Wilson et al., the newly discovered colibactin adducts provided the first direct evidence that alkylation via a cyclopropane "warhead" underlies the genotoxin's DNA destruction. Furthermore, the data suggest that the adducts are biomarkers for pks+ E. coli exposure and could inform colorectal cancer prognosis. In a related Perspective, Rachel M. Bleich and Janelle C. Arthur write; "this [study] represents a significant mechanistic advance in understanding the chemical nature of colibactin and its carcinogenic activities."
-end-


American Association for the Advancement of Science

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.