Nav: Home

A smart jumpsuit provides information on infants' movement and development

February 14, 2020

A new innovation makes it possible, for the first time, to quantitatively assess children's spontaneous movement in the natural environment.

Researchers have developed a smart jumpsuit, or a garment that accurately measures the spontaneous and voluntary movement of infants from the age of five months. Details on their motility help in assessing abnormal neurological development, among other things.

The study on the smart jumpsuit and the related analysis method applied to 7-month-old infants was published in the Scientific Reports journal. In the future, the jumpsuit can also be used to study older children.

The assessment of spontaneous and voluntary movements is part of the neurological examination of infants. Previously, the quantitative tracking of children's spontaneous motility in the natural environment has not been possible. Instead, children have been primarily qualitatively assessed at the physician's or physiotherapist's practice, which requires taking into account the fact that the infant's behaviour in the practice setting does not necessarily entirely match that seen at home.

"The smart jumpsuit provides us with the first opportunity to quantify infants' spontaneous and voluntary movements outside the laboratory. The child can be sent back home with the suit for the rest of the day. The next day, it will be returned to the hospital where the results will then be processed," explains Sampsa Vanhatalo, professor of clinical neurophysiology at the University of Helsinki.

Vanhatalo says that the new analysis method quantifies infant motility as reliably as a human being would be able to do by viewing a video recording. After the measurement, the infant's actual movements and physical positions will be known to the second, after which computational measures can be applied to the data.

"This is a revolutionary step forward. The measurements provide a tool to detect the precise variation in motility from the age of five months, something which medical smart clothes have not been able to do until now."

Neurological abnormalities should be detected early on

The data gleaned by the smart jumpsuit is valuable, since the detection of abnormalities in the neurological development of infants at an early stage enables early support. Brain plasticity is at its strongest in early childhood, and is benefited by measures supporting development, which are targeted at recurring everyday activities.

At least 5% of Finnish children suffer from problems associated with language development, attention regulation and motor development. Often, such problems overlap. The pathogenic mechanisms underlying developmental disorders are complex, but preterm birth, perinatal brain damage and the lack of early care, as well as insufficient stimulation in the growth environment aggravate the risk of developmental problems.

According to Leena Haataja, professor of paediatric neurology, developmental disorders in today's pressure-dominated world pose a considerable risk that can lead to learning difficulties and obstacles in the competition for education and jobs. Furthermore, they are a risk factor associated with exclusion from contemporary society.

"The early identification of developmental disorders and support for infants' everyday functional capacity in interaction with the family and the growth environment constitute a significant factor on the level of individuals, families and society," Haataja notes.

In the future, the smart jumpsuit can be used for the objective measurement of how various therapies and treatments affect children's development.

"This is the million-dollar question in Western healthcare. In addition, we may be able to quantify how early motor development associates with later cognitive development," Vanhatalo says.
-end-
The smart jumpsuit was developed under the Rhythms in Infant Brain (RIB) project, part of the Health from Science (TERVA) programme funded by the Academy of Finland, the Foundation for Pediatric Research and the Finnish Brain Foundation. The multidisciplinary research group, which operates in the New Children's Hospital, is headed by neurophysiologist Sampsa Vanhatalo and paediatric neurologist Leena Haataja. In addition to physicians, the group comprises psychologists, physiotherapists, nurses and engineers.

The textile and usability design of the smart jumpsuit was coordinated by researcher Elina Ilén, while researchers Manu Airaksinen and Okko Räsänen from Aalto University were in charge of AI analyses. The project utilised the Movesense sensor, an open-source device developed in Finland by Suunto, and a mobile application developed by the German company Kaasa.

University of Helsinki

Related Infants Articles:

Probiotic may help treat colic in infants
Probiotics -- or 'good bacteria' -- have been used to treat infant colic with varying success.
Deaf infants' gaze behavior more advanced than that of hearing infants
Deaf infants who have been exposed to American Sign Language are better at following an adult's gaze than their hearing peers, supporting the idea that social-cognitive development is sensitive to different kinds of life experiences.
Initiating breastfeeding in vulnerable infants
The benefits of breastfeeding for both mother and child are well-recognized, including for late preterm infants (LPI).
Young infants with fever may be more likely to develop infections
Infants with a high fever may be at increased risk for infections, according to research from Penn State College of Medicine.
Early term infants less likely to breastfeed
A new, prospective study provides evidence that 'early term' infants (those born at 37-38 weeks) are less likely than full-term infants to be breastfeed within the first hour and at one month after birth.
Infants are more likely to learn when with a peer
Researchers at the University of Connecticut and University of Washington looked at the mechanisms involved in language learning among nine-month-olds, the youngest population known to be studied in relation to on-screen learning.
Allergic reactions to foods are milder in infants
Majority of infants with food-induced anaphylaxis present with hives and vomiting, suggesting there is less concern for life-threatening response to early food introduction.
Non-dairy drinks can be dangerous for infants
A brief report published in Acta Paediatrica points to the dangers of replacing breast milk or infant formula with a non-dairy drink before one year of age.
Infants can't talk, but they know how to reason
A new study reveals that preverbal infants are able to make rational deductions, showing surprise when an outcome does not occur as expected.
Infants are able to learn abstract rules visually
Three-month-old babies cannot sit up or roll over, yet they are already capable of learning patterns from simply looking at the world around them, according to a recent Northwestern University study published in PLOS One.
More Infants News and Infants Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.