TPU researchers discover how to improve safety of nuclear power plants

February 14, 2020

Researchers at Tomsk Polytechnic University found a method to increase fuel lifetime by 75%. According to the research team, it will significantly increase safety and reduce the operating cost of nuclear power plants in hard-to-reach areas. The study results were published in Nuclear Engineering and Design.

Previously, a team of researchers from the Russian Federal Nuclear Center - All-Russian Research Institute of Technical Physics, Tomsk Polytechnic University, and the Budker Institute of Nuclear Physics proposed the concept of a thorium hybrid reactor, where high-temperature plasma confined in a long magnetic trap is used to obtain additional neutrons. Unlike operating reactors, the proposed thorium hybrid reactor has moderate power, relatively small size, high operational safety, and low level of radioactive waste.

One of the biggest challenges for the development of remote areas, such as the Far North, is a stable energy supply. According to Tomsk researchers, often the only solution is to use low-power nuclear plants.

However, the reactor refueling, one of the most hazardous and time-consuming procedures in nuclear energy, is a significant problem. "Reduction of refuel frequency will drastically improve operational safety. Furthermore, it reduces transportation costs of fresh fuel or a nuclear power plant to a transshipment site." Vladimir Nesterov, associate professor of the TPU Division for Nuclear-Fuel Cycle, says.

The scientists carried out theoretical calculations proving the possibility of creating a thorium-based nuclear fuel cycle. Thorium is four times as abundant as uranium. Additionally, thorium fuel has a significantly higher regeneration intensity of fissile isotopes necessary for energy production.

"The achieved results can draw the attention of the scientific community to the potential of the thorium nuclear fuel cycle. We demonstrated that the implementation of this cycle in a low-power reactor installation results in increasing of fuel lifetime by 75%," the expert says.

In the future, researchers want to continue experiments in the verified software and carry out thermophysical calculations of low-power reactors operating in the thorium-uranium fuel cycle with subsequent implementation of the developed calculation methods in the educational process.
-end-


Tomsk Polytechnic University

Related Nuclear Articles from Brightsurf:

Explosive nuclear astrophysics
An international team has made a key discovery related to 'presolar grains' found in some meteorites.

Nuclear medicine and COVID-19: New content from The Journal of Nuclear Medicine
In one of five new COVID-19-related articles and commentaries published in the June issue of The Journal of Nuclear Medicine, Johnese Spisso discusses how the UCLA Hospital System has dealt with the pandemic.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Unused stockpiles of nuclear waste could be more useful than we might think
Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.

Six degrees of nuclear separation
For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors.

How to dismantle a nuclear bomb
MIT team successfully tests a new method for verification of weapons reduction.

Material for nuclear reactors to become harder
Scientists from NUST MISIS developed a unique composite material that can be used in harsh temperature conditions, such as those in nuclear reactors.

Nuclear physics -- probing a nuclear clock transition
Physicists have measured the energy associated with the decay of a metastable state of the thorium-229 nucleus.

Milestones on the way to the nuclear clock
For decades, people have been searching for suitable atomic nuclei for building an ultra-precise nuclear clock.

Nuclear winter would threaten nearly everyone on Earth
If the United States and Russia waged an all-out nuclear war, much of the land in the Northern Hemisphere would be below freezing in the summertime, with the growing season slashed by nearly 90 percent in some areas, according to a Rutgers-led study.

Read More: Nuclear News and Nuclear Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.