Nav: Home

Tiny, erratic protein motor movements revealed

February 14, 2020

The smallest proteins travel in our cells, completing deeply important tasks to keep our molecular mechanisms moving. They are responsible for transporting cargo, duplicating cells and more. Now, a research team based in Japan has uncovered more about how these proteins move.

They published their results on Jan. 23 in Scientific Reports, a Nature journal. Researchers hope the work on biological molecular motors, such as the kinesin and dynein proteins they study, will lead to the development of synthetic motors that could be applied to autonomous material transportation, mechanical actuation, and other energy conversion means.

"Synthetic molecular motors have great potential to realize novel functions beyond the capabilities of biological molecules," said paper author Ryota Iino, professor at the Institute for Molecular Science in the National Institutes of Natural Science. "As Richard Feynman said, 'What I cannot create, I do not understand.' We strongly believe that we need to create synthetic molecular motors to completely understand their operational and design principles."

The first step to creating synthetic molecular motors is to fully understand how biological motors move. In order to do this, Iino and his team used high-speed, highly precise imaging to track how a single molecule -- specifically dynein -- moves along a microtubule, which helps provide structure in cells. The researchers previously used the same imaging technique to study kinesin, which was found to move to with precision along a single rail of a microtubule.

However, they found the dynein moved far more erratically than kinesin.

"In contrast to the precise movement of kinesin, dynein movement involves not only forward steps, but also frequent backward steps and side steps to adjacent rails," Iino said. "In other words, dynein walks like a drunk person."

Next, Iino and his team will continue to image dynein in detail, with the goal of understanding how the protein coordinates -- or doesn't coordinate at all -- to perform its molecular motor tasks.

"Our result indicates that linear molecular motors do not have to move precisely to achieve an important function of the cargo transport in the cell," Iino said. "It is important for us to understand both the commonality and diversity in the walking mechanism of the linear molecular motors to eventually realize motors made of synthetic molecules.
This work was supported, in part, by the Grants-in-Aid for Scientific Research on Innovative Areas "Molecular Engine" and by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Other contributors include Jun Ando, Akihiko Nakamura and Mayuko Yamamoto, all of the Institute for Molecular Science in the National Institutes of Natural Sciences. Ando and Nakamura are also affiliated with the Graduate University for Advanced Studies. Other authors include Tomohiro Shima of the Department of Biological Sciences in the Graduate School of Science at The University of Tokyo; Riko Kanazawa, Reiko Shimo-Kon and Takahide Kon, all of the Department of Biological Sciences at the Graduate School of Science at Osaka University.

National Institutes of Natural Sciences

Related Cells Articles:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Scientists modify CAR-T cells to target multiple sites on leukemia cells
In a preclinical study, scientists engineer new CAR-T cells to attack three sites on leukemia cells, instead of one.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Successful anti-PD-1 therapy requires interaction between CD8+ T cells and dendritic cells
A team led by a Massachusetts General Hospital investigator has found that successful cancer immunotherapy targeting the PD-1 molecule requires interaction between cytotoxic CD8+ T cells, which have been considered the primary therapeutic target, and dendritic cells, critical activators of T cell response.
More Cells News and Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at