Demonstration of world record transmission capacity over a 38-core 3-mode optical fiber

February 14, 2020

[Points][Abstract]

The National Institute of Information and Communications Technology (NICT, President: TOKUDA Hideyuki, Ph.D.), Sumitomo Electric Industries, Ltd. (Sumitomo Electric, President: INOUE Osamu) and Optoquest Co., Ltd. (Optoquest, President: HIGASHI Noboru) succeeded in experimental transmission at 10.66 peta-bit per second, achieving a spectral efficiency of 1158.7 bits per second/Hz. This result exceeded the previous record of 10.16 peta-bit per second.

In this experiment, we develop an optical fiber that supports the transmission of three transverse modes in 38 cores with reduced relative propagation delays between modes, and demonstrated its suitability for high spectral efficiency modulation, namely 256- and 64-quadrature amplitude modulation (QAM). The achieved data rate per fiber increased by a factor of more than 100 over existing commercial transmission systems, demonstrating a potential to significantly reduce the number of fibers required for data transmission over short distances, such as intra- and inter data-center traffic. This result will be presented at the Optical Fiber Communication Conference (OFC 2020) to be held on March 8-12, 2020, in San Diego.

[Background]

In 2008, NICT established a study group on Extremely Advanced Optical Transmission Technologies to enhance collaboration between industry, universities and the government, engaging in pioneering research and development. The research by the collaborative group is at a high level in fierce global competition, exemplified by a past data-rate demonstration record of 10.16 peta-bit per second in a 19-core 6-mode fiber. To achieve larger capacities, a fiber with a larger number of cores or modes is required. However, there are several technical challenges in increasing them, such as the mechanical reliability of fibers or the complexity of signal processing.

[Achievements]

For this transmission experiment, Sumitomo Electric developed a 38-core 3-mode fiber, Optoquest developed a 38-core multiplexer, and NICT performed a transmission experiment of 10.66 peta-bit per second over 13 km distance.

When transmitting different data-streams over different transverse modes in each core, the signals typically experience strong mixing and require digital signal processing (DSP) to separate the signals at the receiver. To reduce the complexity of the DSP, it is important to reduce the propagation delay differences between the modes (DMD: Differential Mode Delay). For this experiment, we fabricated a 38-core 3-mode fiber with reduced propagation delays between modes in each core for simplifying DSP and achieved a delay difference of 0.6-3.0 nanoseconds. Furthermore, loss variation between different modes (MDL: Mode-Dependent Loss), can impair signal quality and reduce achievable data-rate. In the experiment, both the optical fiber and the core- and mode-multiplexers were optimized for a reduced MDL of 5-8.5 dB for most of the fiber cores. Depending on the MDL and DMD in each core, highly spectrally efficient modulation formats of 256- and 64-QAM were selected for transmission leading to data-rates between 279 tera-bit per second and 298 tera-bit per second in each of the 38 cores.

Due to the transmission of a total of 114 spatial channels (38 cores x 3 modes), we increased the transmission capacity by a factor of more than 100 compared to the current standard transmission systems and hence these results demonstrate a potential to significantly reduce the number of fibers required in short-range, ultra-high-capacity systems, such as those for intra- and inter data-center connections.

[Future Prospects]

NICT will continue to promote the effort for early social implementation of the technologies, and the cutting-edge/innovative research and development toward the realization of the ultimate performance of the multi-core/multi-mode optical fiber transmission systems.
-end-


National Institute of Information and Communications Technology (NICT)

Related Optical Fiber Articles from Brightsurf:

Graphene controls laser frequency combs in fiber
Tuning laser frequency combs electrically can enrich diversity of comb outputs and help to stabilize them actively.

Asymmetric optical camouflage: Tuneable reflective color accompanied by optical Janus effect
Deliverying viewing-direction sensitive information display across single sheet of transreflective window is introduced.

Revealing the reason behind jet formation at the tip of laser optical fiber
When an optical fiber is immersed in liquid, a high temperature, high speed jet is discharged.

Rochester researchers document an optical fiber beyond compare
A new anti-resonant hollow core optical fiber produces a thousand times less ''noise'' interfering with signals it transmits compared to the single-mode fibers now widely used.

Brazilian researcher creates an ultra-simple inexpensive method to fabricate optical fiber
The conventional process requires costly large-scale equipment. The novel method can be executed in a single step by a device no larger than a microwave oven.

How bacteria adhere to fiber in the gut
Researchers have revealed a new molecular mechanism by which bacteria adhere to cellulose fibers in the human gut.

Brazilian researchers develop an optical fiber made of gel derived from marine algae
Edible, biocompatible and biodegradable, these fibers have potential for various medical applications.

A survey on optical memory and optical RAM technologies
The ability to store with light and built promising optical memories has been an intriguing research topic for more than two decades.

All-fiber optical wavelength converter
Wavelength conversion in all-fiber structure has extensive applications in new fiber-laser sources, signal processing, and multi-parameter sensors.

New design could make fiber communications more energy efficient
Researchers say a new discovery on a US Army project for optoelectronic devices could help make optical fiber communications more energy efficient.

Read More: Optical Fiber News and Optical Fiber Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.