Broadband transmission-type coding metasurface for electromagnetic beam forming and scanning

February 14, 2020

Due to their excellent performance in manipulating electromagnetic (EM) waves freely and flexibly, metasurfaces have been widely investigated since the beginning of the 21st century. However, with the rapid development of digital information technology, the traditional analog metasurfaces with continuous phase control become difficult to control the digital information. In 2014, digital coding and programmable metasurfaces were proposed, which make it possible to manipulate the EM waves from the digital aspect, building up a bridge between the information science and physical metasurface. Recently, some researchers have proposed a novel broadband transmission-type 1-bit digital coding metasurface, and analyzed its manipulations on EM far-field radiating functionalities.

The related paper entitled "Broadband transmission-type 1-bit coding metasurface for beam forming and scanning" was published in SCIENCE CHINA Physics, Mechanics & Astronomy, in which RuiYuan Wu and Prof. TieJun Cui from Southeast University are the first author and the corresponding author, respectively.

For a long time, improving the working bandwidth is always a big challenge of metasurfaces. Generally, wideband design of reflection-type metasurface is easier to implement because only the phase response should be considered, and the reflection amplitude remains above 95% due to the presence of metallic ground. In contrast, in the design of transmission-type metasurface, not only the phase response needs to satisfy the requirements for digital coding schemes, but also a high transmission amplitude is demanded. The realization of both conditions relies on strong resonance of the digital particle, which is very difficult to maintain in a wide band.

To overcome this difficulty, the authors adopted a multi-layer transmission-type structure, as shown in Figure 1(a), to implement the digital particles. The structure is composed of four identical metallic square patches (see Figure 1(b)), a metallic cross-shaped slot layer (see Figure 1(c)), and dielectric substrates. By adjusting the sizes of square patches, the phase responses of transmitted EM waves would be changed accordingly. After optimizations between the higher transmittance and sufficient phase difference of 1-bit coding, two digital particles with different geometries were designed to represent the digital states '0' and '1'. As displayed in Figures 1(d) and 1(e), the phase difference between the two particles was kept near 180° to ensure the 1-bit coding effect in the wideband range of 8.1-12.5 GHz with high transmittance, corresponding to an over 40% relative bandwidth.

Based on the broadband characteristics of the digital particles, a digital coding metasurface design was firstly constructed to achieve high-directional beam forming in the wide band, in which the sidelobe levels were below ?10dB, as shown in Figures 2(a) and 2(b). Furthermore, the digital particles on the metasurface were encoded as the sequence of '010101...' to radiate two symmetrical beams, where the deflecting angles could scan continuously in one-dimensional range with the change of working frequency. The scanning angle is more than 20°, as shown in Figures 2(c) and 2(d). The proposed design breaks the current bandwidth limit in the transmission-type coding metasurfaces, indicating wide application potentials in radar and wireless communication systems.
-end-
Link:

R. Y. Wu, L. Bao, L. W. Wu, and T. J. Cui, Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning, Sci. China-Phys. Mech. Astron. 63, 284211 (2020), https://doi.org/10.1007/s11433-019-1479-3

http://engine.scichina.com/publisher/scp/journal/SCPMA/63/8/10.1007/s11433-019-1479-3?slug=fulltext

Science China Press

Related Particles Articles from Brightsurf:

Comparing face coverings in controlling expired particles
Laboratory tests of surgical and N95 masks by researchers at UC Davis show that they do cut down the amount of aerosolized particles emitted during breathing, talking and coughing.

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.

How small particles could reshape Bennu and other asteroids
NASA's OSIRIS-REx spacecraft observed tiny bits of material jumping off the surface of the asteroid Bennu.

Probing the properties of magnetic quasi-particles
Researchers have for the first time measured a fundamental property of magnets called magnon polarisation -- and in the process, are making progress towards building low-energy devices.

TU Darmstadt: Pause button for light particles
Researchers at TU Darmstadt halt individual photons and can release them at the push of a button.

Chamber measurement standards established for fine particles
What effects do global warming and the formation of fine particles have on each other?

Distortion isn't a drag on fluid-straddling particles
New research published by EPJ E shows that the drag force experienced by fluid-straddling particles is less affected by interface distortion than previously believed.

Tiny 'bridges' help particles stick together
Understanding how particles bind together has implications for everything from the likelihood a riverbank will erode to the mechanism by which a drug works in the body.

Micromotors push around single cells and particles
A new type of micromotor -- powered by ultrasound and steered by magnets -- can move around individual cells and microscopic particles in crowded environments without damaging them.

Tiny particles lead to brighter clouds in the tropics
When clouds loft tropical air masses higher in the atmosphere, that air can carry up gases that form into tiny particles, starting a process that may end up brightening lower-level clouds, according to a CIRES-led study published today in Nature.

Read More: Particles News and Particles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.