Brief bursts, big insights

February 14, 2020

Neural oscillations - also known as brainwaves - are important carriers of information in the brain. Researchers are increasingly coming to view them less as sustained oscillations and more as transient bursts. Until now, there has been no method for measuring such short-lived bursts in real time or for examining how they influence the behavior of living things. In cooperation with her working group, Prof. Dr. Ilka Diester of the University of Freiburg's Institute of Biology III and excellence cluster BrainLinks-BrainTools has developed a new method for analyzing data in the brain. They are using their method to detect short beta wave bursts in real time within neural frequency bands of around 20 Hertz and to show how rats can increase the occurrence of these bursts. The researchers have published their results in the scientific journal "Nature Communication Biology."

In humans, monkeys, and rodents, it is possible to detect short bursts of up to 150 milliseconds of beta waves - a specific section of the brainwave spectrum - within a frequency range of 15 hertz to 30 hertz. Researchers up to now connected these events with memory, motion, and perception. During what is known as neuro-feedback training, rats always receive a reward when their brain produces a burst in the beta frequency range. This increases not only the recurrence of beta frequency bursts, but the total amplitude of this frequency range as well.

Through their work, Diester and her team have been able to predict beta range bursts in rats based on the rats movements - particularly in the front half of the rats' bodies. This new method paves the way for investigating the role of beta bursts in specific behaviors. Because beta frequencies play a significant role in motion control, the method also opens new approaches in neuroprosthetics - the development and application of electronic implants for the restoration of damaged nerve function.
-end-
At the Institute of Biology III and BrainLinks-BrainTools, Diester leads a working group that is using optophysiology - or new types of optical tools - to investigate the functioning of neural circuitry. The researchers are probing the neural underpinnings of motor and cognitive control as well as interactions between the prefrontal and motor cortex, which are both parts of the cerebral cortex.

Original publication

Karvat, G., Schneider, A., Alyahyay, M., Steenbergen, F., Tangermann, M., & Diester, I. (2020): Real-time detection of neural oscillation bursts allows behaviourally relevant neurofeedback. In: "Nature Communications Biology". DOI: 10.1038/s42003-020-0801-z

Article about Ilka Diester's research in the University of Freiburg's online magazine http://www.pr.uni-freiburg.de/pm/online-magazin/forschen-und-entdecken/licht-in-die-blackbox

Contact:
Institute of Biology III
University of Freiburg

University of Freiburg

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.