Producing single photons from a stream of single electrons

February 14, 2020

Researchers at the University of Cambridge have developed a novel technique for generating single photons, by moving single electrons in a specially designed light-emitting diode (LED). This technique, reported in the journal Nature Communications, could help the development of the emerging fields of quantum communication and quantum computation.

A single photon, the elementary particle of light, can carry a quantum bit of information over hundreds of kilometres. Therefore, a source that can generate single photons is an important building block in many quantum technologies. Up to now, single-photon sources have been made in research labs from self-assembled quantum dots in semiconductors, or structural defects in diamonds. The formation of these dots and defects is a random process, so it is hard to predict the location and the photon energy (or wavelength) of these single-photon sources. This randomness may pose a challenge in integrating a source into a large quantum network.

In this article, the researchers show that they can generate a single photon in a different, controlled, way, without the need for a quantum dot or a defect, by moving only one electron at a time to recombine with a 'hole' (a missing electron in a filled 'band' of electrons).

'Imagine trying to send a digital message by firing a stream of blue or red balls over a wall in the following way. A conveyor belt with ball-sized indentations drags a series of white balls up a slope and drops the balls off a cliff at the end. Each ball picks up speed as it falls, is then sprayed blue or red (depending on the message) as it bounces off to the side and over the wall', explains Dr Tzu-Kan Hsiao, who did the experiment during his PhD at Cambridge.

`The indentations in the conveyor belt can only carry one ball each.

Only one ball gets sprayed at a time, and there's no chance some of the balls are intercepted by an eavesdropper without the person on the receiving end noticing a missing ball, whereas if sometimes two or more balls come at a time, the eavesdropper can catch odd balls and the receiver is none the wiser. In that way, some of the message may be unintentionally disclosed.'

'In the experiment, we made a device near the surface of Gallium Arsenide (GaAs) by using only industry-compatible fabrication processes. This device consists of a region of electrons close to a region of holes, and a narrow channel in between', says Professor Christopher Ford, team leader of the research.

'In order to transport only one electron at a time, we launch a sound wave along the surface. In GaAs such a ``surface acoustic wave'' also creates an accompanying electrical potential wave, in which each potential minimum carries just one electron. The potential wave, like a conveyor belt, brings individual electrons to the region of holes one after another. A series of single photons is generated when each electron quickly recombines with a hole before the next electron arrives.

Each single photon could be given one of two polarisations to carry a message such that an eavesdropper cannot intercept the message without being detected.

In addition to being a novel single-photon source, more importantly, it may be possible with this new technique to convert the state of an electron spin to the polarisation state of a photon. By bridging semiconductor-based quantum-computers using single photons as 'flying' qubits, the ambitious goal of building large-scale distributed quantum-computing networks may be achieved.

University of Cambridge

Related Electrons Articles from Brightsurf:

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Electrons News and Electrons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to