Researchers wake monkeys by stimulating 'engine' of consciousness in brain

February 14, 2020

MADISON, Wis. -- A small amount of electricity delivered at a specific frequency to a particular point in the brain will snap a monkey out of even deep anesthesia, pointing to a circuit of brain activity key to consciousness and suggesting potential treatments for debilitating brain disorders.

Macaques put under with general anesthetic drugs commonly administered to human surgical patients, propofol and isoflurane, could be revived and alert within two or three seconds of applying low current, according to a study published today in the journal Neuron by a team led by University of Wisconsin-Madison brain researchers.

"For as long as you're stimulating their brain, their behavior -- full eye opening, reaching for objects in their vicinity, vital sign changes, bodily movements and facial movements -- and their brain activity is that of a waking state," says Yuri Saalmann, UW-Madison psychology and neuroscience professor. "Then, within a few seconds of switching off the stimulation, their eyes closed again. The animal is right back into an unconscious state."

Mice have been roused from light anesthesia before with a related method, and humans with severe disorders have improved through electric stimulation applied deep in their brains. But the new study is the first to pull primates in and out of a deep unconscious state, and the results isolate a particular loop of activity in the brain that is crucial to consciousness.

Saalmann's lab focused its attention on a spot deep in the core of the brain called the central lateral thalamus. Lesions in that area of the human brain are linked to severe consciousness disruption like coma. But location alone was not enough to manipulate consciousness. Building on studies of waking versus unconscious brain activity in cats, says graduate student Michelle Redinbaugh, the researchers tried to match the frequency of central lateral thalamus activity during wakefulness.

Precisely stimulating multiple sites simultaneously as little as 200 millionths of a meter apart and applying bursts of electricity 50 times per second proved to work like a switch to bring the brain in and out of anesthesia.

"A millimeter out of position, and you dramatically reduce the effect," says Redinbaugh, first author of the study. "And if you're in that ideal location, but stimulating at two Hertz instead of 50? Nothing happens. This is very location- and frequency-specific."

Such precise fixation on activity in the central lateral thalamus could be coupled with recordings of activity in the outer folds of the brain, called the cortex, also believed to be key to consciousness. By watching signaling as Wisconsin National Primate Research Center monkeys moved from unconscious to conscious states, the researchers saw the central lateral thalamus stimulating parts of the cortex. In turn, the cortex influenced the central lateral thalamus to keep it active.

"So, you have this loop between the deeper layers of the cortex and the central lateral thalamus, which in a sense acts like an engine," says Saalmann, whose work was supported by the National Institutes of Health and the Binational Science Foundation. "We can now point to crucial parts of the brain that keep this engine running and drive changes in the cerebral cortex that affect your awareness, the richness of your conscious experience."

Designing and delivering electrical stimulation with such precision gives the researchers hope that their approach could be used to help patients dealing with many types of abnormal brain activity.

"This kind of intervention could really be improved by a tailor-made approach," says Redinbaugh. "Specifically mimicking activity of this nucleus could be a much more effective way of helping patients in a coma, or people that have spatial neglect. We think this could broadly affect disorders of consciousness."
-end-
This research was funded with grants from the National Institutes of Health (R01MH110311 and P51OD011106), the Binational Science Foundation (201732) and the Wisconsin National Primate Research Center.

--Chris Barncard, 608-890-0465, barncard@wisc.edu

CONTACT: Yuri Saalmann, saalmann@wisc.edu, 608-262-8671; Michelle Redinbaugh, mredinbaugh@wisc.edu

READ THIS STORY ONLINE: https://news.wisc.edu/researchers-wake-monkeys-by-stimulating-engine-of-consciousness-in-brain/

University of Wisconsin-Madison

Related Brain Activity Articles from Brightsurf:

Inhibiting epileptic activity in the brain
A new study shows that a protein -- called DUSP4 -- was increased in healthy brain tissue directly adjacent to epileptic tissue.

What is your attitude towards a humanoid robot? Your brain activity can tell us!
Researchers at IIT-Istituto Italiano di Tecnologia in Italy found that people's bias towards robots, that is, attributing them intentionality or considering them as 'mindless things', can be correlated with distinct brain activity patterns.

Using personal frequency to control brain activity
Individual frequency can be used to specifically influence certain areas of the brain and thus the abilities processed in them - solely by electrical stimulation on the scalp, without any surgical intervention.

Rats' brain activity reveals their alcohol preference
The brain's response to alcohol varies based on individual preferences, according to new research in rats published in eNeuro.

Studies of brain activity aren't as useful as scientists thought
Hundreds of published studies over the last decade have claimed it's possible to predict an individual's patterns of thoughts and feelings by scanning their brain in an MRI machine as they perform some mental tasks.

A child's brain activity reveals their memory ability
A child's unique brain activity reveals how good their memories are, according to research recently published in JNeurosci.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.

Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.

Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.

Read More: Brain Activity News and Brain Activity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.