Nav: Home

Genetic variation shown in patients with severe vascular complications of infection

February 15, 2016

BOSTON - Major infections such as influenza and bacterial sepsis kill millions of people each year, often resulting fro dangerous complications that impair the body's blood vessels. But the reasons why some patients experience these dramatic responses to infections -- and others don't -- have been unclear.

Now a research team led by investigators in the Center for Vascular Biology Research (CVBR) at Beth Israel Deaconess Medical Center (BIDMC) has shown that variations in the Tie2 gene, which is expressed on the inner surface of blood vessels, play an important role in patient responses. The new findings, which appear online this week in the Proceedings of the National Academy of Sciences (PNAS), demonstrate that diminished Tie2 levels are associated with potentially devastating responses to infections, while higher Tie2 levels provide protection. This new discovery suggests that Tie2 could be an important target to help clinicians more quickly determine which patients are at highest risk of developing these life-threatening vascular complications following infectious disease.

"The complications arising from sepsis and other infections can appear rapidly and dramatically, leaving patients in absolutely terrible shape," said senior author Samir Parikh, MD, an investigator in BIDMC's CVBR and Division of Nephrology and Associate Professor of Medicine at Harvard Medical School. "Patients might arrive at the hospital feeling generally unwell and within a few hours, can be in critical condition." But, this is not the case for everyone: many other patients arrive at the hospital with the same infectious symptoms, but get no worse and go on to recover fully.

In studying the host response to infections, researchers have for many years focused on the role of the innate immune system. More recently, the focus has broadened to include the role played by the body's vascular system.

"Improperly functioning blood vessels can have lethal consequences," explained Parikh. "For example, when the lungs' small blood vessels become leaky, the lungs fill with water and stop working properly, resulting in an often fatal condition called acute respiratory distress syndrome [ARDS]. No matter what type of infection a patient has initially, if he or she goes on to develop vascular leakage, that patient is in trouble. We wanted to find out if the Tie2 protein played a role in determining whether or not patients experience these devastating vascular complications," said Parikh.

The authors first determined in mouse models of several infections -- including the parasitic infection malaria, the viral infection influenza and the bacterial infection sepsis - that all animals had decreased levels of Tie2 compared to baseline levels. Subsequent experiments revealed that reduced Tie2 was indeed setting the stage for vascular leakage and ensuing clinical complications in the animal models.

"The Tie2 gene is essential for embryonic development and knockout mice without the Tie2 gene die in utero," said corresponding author Chandra Ghosh, PhD, a member of the Parikh laboratory at BIDMC. "Interestingly, mice with a single copy of the gene behave normally until they are challenged with infections."

After genomic analysis identified common variants that influence Tie2 expression, the authors examined a cohort of more than 1,600 intensive care unit (ICU) patients overseen by the research group of coauthor David Christiani, MD, MPH, at the Harvard T. H. Chan School of Public Health, to determine if variation in Tie2 expression was associated with the development of ARDS. Indeed, the members of the cohort who had genetic variants linked to low Tie2 levels were at higher risk for developing ARDS, while those with genetic variants linked to higher Tie2 levels were protected from this devastating complication.

"This discovery was exciting," said Parikh. "It was an exact match with the variants we had just identified in the genomic analysis. It supported our hypothesis that greater amounts of Tie2 protein may help people handle the stress of infection, while less-than-normal amounts of the protein leave individuals vulnerable to these dangerous complications.

"Our research appears to offer the first genetic evidence that the Tie2 gene itself may be an important target to think about in terms of clinical development," added Parikh. "Many more studies are needed to understand how the body's vasculature reacts to the stress of infection. These may not be massive differences at the level of genes and gene expression, but we think they are commonly present and of high enough magnitude that they could tip the scales. Many patients with severe infections are walking a fine line between recovery and deadly complications like ARDS. If the body is genetically hard-wired to better sustain Tie2 in those critical hours, it might put that patient's health on a whole different path."
-end-
This study was supported by research funding from the National Institutes of Health (HL093234; HL093234-S1 and HL125275) the German Research Foundation, and the Canadian Institutes of Health Research.

Study coauthors include BIDMC investigators Chandra Ghosh and Sascha David (co-first authors), Anthony Berghelli, Katelyn Milam, Sarah Higgins, Jon Hunter, Aditi Mukherjee, Mei Tran, Kiichiro Yano and Shulin Lu; Ruyang Zhang and Yongyue Wei of MGH and the Harvard T. H. Chan School of Public Health; Freeman Suber, Lester Kobzik and David Christiani of Harvard T. H. Chan School of Public Health; Kevin Kain and Daniel Dumont of the University of Toronto; Ansgar Santel of Silenece Therapeutics GmbH, Berlin, Germany; and Prajna Guha of Roger Williams Medical Center.

About Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks as a national leader among independent hospitals in National Institutes of Health funding.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Rehabilitation Center and is a research partner of Dana-Farber/Harvard Cancer Center and the Jackson Laboratory. BIDMC is the official hospital of the Boston Red Sox. For more information, visit http://www.bidmc.org.

Beth Israel Deaconess Medical Center

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...