Nav: Home

Oncogene controls stem cells in early embryonic development

February 15, 2016

After a gestation period of around ten months, fawns are born in early summer - when the weather is warm and food is plentiful for the mother. Six months would actually be enough for the embryo's development, but then offspring from mating in the later portion of summer would be born in winter. Therefore, nature prolongs the gestation period by a hormone-regulated pause in the development of the early embryos. Many animal species use this process, called diapause, to adjust their reproduction to environmental conditions.

In their research on embryonic stem cells, Andreas Trumpp and colleagues have now discovered the factor that controls this developmental pause. Trumpp is head of a research department at the DKFZ and of Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), which is based at the DKFZ and supported by the Dietmar Hopp Foundation.

It is known in many types of cancer that the more MYC they produce, the more aggressively the tumors grow. The scientists had noticed that MYC is also active in embryonic stem cells. In order to explore the role that the gene plays in these cells, the investigators obtained embryonic stem cells from mice whose MYC genes (c-MYC and N-MYC) they could selectively deactivate. The resulting embryonic MYC-depleted stem cells strongly reduced the activity of genes that play a role in cell division, cellular growth and metabolism. However, the dormant cells stayed alive and retained their identity as stem cells: they continued producing the important "stem cell factors" that enable them to differentiate into the more than 200 cell types of the body.

Using a chemical substance that inhibits MYC, the scientists were able to show that this biochemical dormancy is reversible. When they stopped giving the inhibitor, the cells immediately resumed RNA, protein and DNA synthesis and were able to proliferate infinitely.

Inhibiting MYC activity arrests embryonic development

"The biochemical dormancy of MYC-depleted stem cells reminded us strongly of the process of diapause, which has remained completely elusive so far," says Roberta Scognamiglio, who is the first author of the study. "In this process, too, embryos in the early development state, called blastocysts, enter a dormant state without growth and almost without metabolism prior to nidation in the uterus." In order to find out whether these two phenomena have the same cause, the researchers compared the activity of all genes in MYC-depleted embryonic stem cells with those in diapaused mouse blastocysts. In both cases, the groups of genes that were inactive besides MYC primarily controlled protein synthesis and cell growth. The stem cell factors, however, continued to be produced unchanged.

When the researchers treated normal blastocysts in the Petri dish with the MYC inhibitor, they fell into a diapause-like state. These dormant embryos were subsequently transferred into surrogate mother mice and grew to become normal young animals.

"To induce diapause or to put embryonic stem cells into a dormant state, it is therefore sufficient to deactivate the MYC oncogene," Trumpp summarizes. "This does not affect the potential of stem cells. This is a very special property of stem cells, because all other cell types die after MYC inhibition."

Trumpp thinks that MYC can also have a disastrous effect on cancer stem cells, particularly on dormant metastasis stem cells. When they migrate through the bloodstream to distant organs, they may come under the influence of signaling molecules that form, for example, in inflammatory processes. These might stimulate their MYC production and thus cause them to grow into metastases. "We now try blocking MYC as a strategy to control these dangerous sleepers," the stem cell researcher says.
-end-
A picture for this press release is available at: http://www.dkfz.de/de/presse/pressemitteilungen/2016/bilder/Trumpp-Cell-003.jpg

Caption: Dormant mouse blastocyst. Source: Andreas Trumpp, DKFZ/HI-STEM

Roberta Scognamiglio, Nina Cabezas-Wallscheid, Marc Christian Thier, Sandro Altamura, Alejandro Reyes, Áine M. Prendergast, Daniel Baumgärtner, Larissa S. Carnevalli, Ann Atzberger, Simon Haas, Lisa von Paleske, Thorsten Boroviak, Philipp Wörsdörfer, Marieke A. G. Essers, Ulrich Kloz, Robert N. Eisenman, Frank Edenhofer, Paul Bertone, Wolfgang Huber, Franciscus van der Hoeven, Austin Smith and Andreas Trumpp: Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause.
CELL 2016, DOI: 10.1016/j.cell.2015.12.033

German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ)

Related Stem Cells Articles:

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.