Nav: Home

Does our solar system have an undiscovered planet? You can help astronomers find out

February 15, 2017

Arizona State University astronomer Adam Schneider and his colleagues are hunting for an elusive object lost in space between our Sun and the nearest stars. They are asking for your help in the search, using a new citizen-science website called Backyard Worlds: Planet 9.

Astronomers have found evidence for a ninth planet in our solar system. The evidence comes from studying the orbits of objects in the solar system's Kuiper Belt. This is a zone of comet-like bodies orbiting the Sun out beyond the orbit of Neptune. The Kuiper Belt is similar to the asteroid belt that circles the Sun between Mars and Jupiter, but it lies dozens of times farther out.

This hypothetical Planet 9 could be similar in size to Neptune, but it may orbit up to a thousand times farther away from the Sun than the Earth does. So while astronomers can see its effects on the Kuiper Belt objects, no one has yet observed Planet 9 directly.

"If it exists, Planet 9 could be large -- maybe 10 times the mass of Earth but orbiting far out beyond the Kuiper Belt," says Schneider. "Yet it must be extremely dim and hard to find." A postdoctoral researcher in ASU's School of Earth and Space Exploration, Schneider is particularly interested in studying objects smaller than fully fledged stars and ranging down in size to planets.

Hiding out in the neighborhood

In addition to searching for a distant planet orbiting the Sun, this new project will help astronomers identify the Sun's nearest neighbors outside of our solar system.

"There are just over four light-years between Neptune and Proxima Centauri, the nearest star, and much of this vast territory is unexplored," says the lead researcher for Backyard Worlds: Planet 9, Marc Kuchner, an astrophysicist at NASA's Goddard Space Flight Center.

Astronomers expect the Sun's neighborhood will contain many low-mass objects called brown dwarfs. These emit very little light at visible wavelengths, but instead glow dimly with infrared -- heat -- radiation.

"Brown dwarfs are somewhat mysterious," says Schneider. "They have masses of less than 80 times that of Jupiter, because that's the point at which nuclear fusion begins and an object becomes by definition a star." But there's no real lower limit to how small a brown dwarf could be, he says.

"If we find one that's, say, five times the mass of Jupiter and it's orbiting a star, we'd call it a planet," Schneider explains. "But an identical object could also be floating freely in space, unattached to any star, and we'd call it a brown dwarf."

Backyard Worlds: Planet 9

So how do astronomers find such objects in space? That's where you can contribute using a website that enlists the help of citizen scientists. It's called Backyard Worlds: Planet 9 and it uses images taken by NASA's WISE space telescope.

WISE, which stands for Wide-field Infrared Survey Explorer, was launched in late 2009 and it has mapped the entire sky several times during the last seven years. WISE detects infrared light, the kind of light emitted by objects at room temperature, like planets and brown dwarfs. This sensitivity to infrared light makes WISE uniquely suited for discovering Planet 9, if it exists.

But there's a snag: Images from WISE have captured nearly 750 million individual sources in the sky. Doubtlessly among these lurk the elusive brown dwarfs and possibly Planet 9. The question is how to sift through the data and identify them.

The trick to finding these needles in haystacks of WISE data is to look for something in motion. Planetary objects and brown dwarfs roaming near the Sun can appear to move across the sky, leaving other celestial objects such as background stars and galaxies, which lie immensely far away, apparently fixed in place.

So the best hope for discovering these worlds is to systematically scan infrared images of the sky, searching for objects that move.

Automated searches for moving objects in the WISE data have already proven successful, but computerized searches are often overwhelmed by image artifacts -- visual noise -- especially in crowded parts of the sky.

As Schneider explains, "People who join in the Backyard Worlds search bring a unique skill to the search: the human ability to recognize movement."

If it moves, check it out

The search method is a 21st-century version of the same technique used at Arizona's Lowell Observatory by astronomer Clyde Tombaugh. He discovered dwarf planet Pluto 87 years ago this week, on February 18, 1930. Back then, Tombaugh compared two photographs taken a couple weeks apart, looking for a tiny dot of light that shifted position.

The Backyard Worlds search works similarly, but by electronically serving up flipbooks of WISE images taken at different times. As each flipbook plays, objects in the field move or change appearance, making it easy for volunteer observers to flag suspicious objects for later follow-up. Participants will share credit for their discoveries in any scientific publications that results from the project.

The discovery of a ninth planet in our solar system or a new nearest neighbor to the Sun would mark a major event in the history of astronomy. Such objects could already be present within the vast WISE dataset, just waiting to be found.

"This program offers an excellent opportunity for citizen scientists to help astronomers with an edge-of-discovery search," says Schneider.
-end-
Besides Arizona State University, Backyard Worlds: Planet 9 is a collaboration between NASA, University of California Berkeley, American Museum of Natural History in New York, the Space Telescope Science Institute in Baltimore, and the Zooniverse, a collaboration of scientists, software developers and educators who collectively develop and manage citizen science projects on the internet.

Arizona State University

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Hello, World! Solar System
by Jill McDonald (Author)

National Geographic Little Kids First Big Book of Space (National Geographic Little Kids First Big Books)
by Catherine D. Hughes (Author), David A. Aguilar (Illustrator)

There's No Place Like Space: All About Our Solar System (Cat in the Hat's Learning Library)
by Tish Rabe (Author), Aristides Ruiz (Illustrator)

Space Encyclopedia: A Tour of Our Solar System and Beyond (National Geographic Kids)
by David A. Aguilar (Author), David A. Aguilar (Illustrator)

Solar System Reference Poster
by Kappa Map (Author)

Solar System Scratch and Sketch: An Activity Book For Inquisitive Artists and Astronauts of All Ages
by Heather Zschock (Author)

Solar System: A Visual Exploration of the Planets, Moons, and Other Heavenly Bodies that Orbit Our Sun
by Marcus Chown (Author)

Our Solar System (Science for Toddlers)
by American Museum of Natural History (Author), Connie Roop (Author), Peter Roop (Author)

The Planets: The Definitive Visual Guide to Our Solar System
by Robert Dinwiddie (Author), Heather Couper (Author), John Farndon (Author), Nigel Henbest (Author), David Hughes (Author), Giles Sparrow (Author), Carole Stott (Author), Colin Stuart (Author)

The Solar System – Easy-to-Read Solar System Book for Kids Ages 5-7 (TIME FOR KIDS Nonfiction Readers)
by Teacher Created Materials (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...