Nav: Home

Motor cortex contributes to word comprehension

February 15, 2017

Researchers from HSE, Northumbria University, and Aarhus University have experimentally confirmed the hypothesis, whereby comprehension of a word's meaning involves not only the 'classic' language brain centres but also the cortical regions responsible for the control of body muscles, such as hand movements. The resulting brain representations are, therefore, distributed across a network of locations involving both areas specialised for language processing and those responsible for the control of the associated action. The results have been published in the journal Neuropsychologia.

One of the basic issues related to the nature of human cognition is the question about the correspondence between physical experiences and feelings, on one hand, and the nature of the brain representations of words and sentences describing these experiences, on the other.

Traditional modular views of cognition suggest that, to encode and comprehend the meaning of a word such as 'throw', the brain's "language module" does not to involve any structures related to the meaning per se (i.e. the "motor module" responsible for the associated movements programs such as the arm and hand movements involved in the act of throwing.

An alternative is offered by an embodied or distributed view suggesting that the brain areas encoding the meaning of a word include both the areas specialised for representing linguistic information, such as the word's acoustic form, but also those brain areas that are responsible for the control of the corresponding perception or action. On this account, in order to fully comprehend the meaning of the word 'throw', the brain needs to activate the cortical areas related to hand movement control. The representation of the word's meaning is, therefore, 'distributed' across several brain areas, some of which reflect experiential or physical aspects of its meaning.

A team of researchers from Denmark, England, and Russia (Nikola Vukovic, Matteo Feurra, Anna Shpektor, Andriy Myachykov, and Yury Shtyrov) investigated the nature and the mechanisms of such distributed word representations. They carried out a series of experiments aiming at finding out how stimulating motor cortex using transcranial magnetic stimulation (TMS) affects word comprehension.

28 volunteers took part in these experiments. A TMS magnetic pulse was delivered to the areas in motor cortex responsible for hand movements as participants engaged in one of the two computer-based experimental tasks: detecting whether a presented string of letters is a word or not, and choosing whether the presented stimulus relates to an abstract or a concrete action.

'We used TMS to inhibit neural activity in the motor cortex as participants tried to distinguish between words related or unrelated to hand movements,' says Andriy Myachykov, leading Research Fellow at the HSE Centre for Cognition & Decision Making and a Senior Lecturer at Northumbria University, Newcastle-upon-Tyne. He notes: 'The advantage of TMS methodology is that it allows to establish the causal link between the stimulated brain area and the cognitive function or behaviour it's hypothesised to support. This distinguishes TMS from many other existing neuroimaging methods. If motor programmes are directly involved during the comprehension of action words, then suppressing neural activity in hand-related motor cortex would interfere with word processing but only if the word also denotes hand movement. Namely, this should lead to increase in task performance errors and longer reaction times. This is exactly what we found'.

These new findings suggest that language-specialised brain areas work in constant interaction with other areas known to support other cognitive processes, such as perception and action. The resulting distributed meaning representations act as dynamic cortical networks rather than a series of specialised modules as suggested by traditional theories.
-end-
http://www.sciencedirect.com/science/article/pii/S0028393217300313

National Research University Higher School of Economics

Related Language Articles:

Human language most likely evolved gradually
One of the most controversial hypotheses for the origin of human language faculty is the evolutionary conjecture that language arose instantaneously in humans through a single gene mutation.
'She' goes missing from presidential language
MIT researchers have found that although a significant percentage of the American public believed the winner of the November 2016 presidential election would be a woman, people rarely used the pronoun 'she' when referring to the next president before the election.
How does language emerge?
How did the almost 6000 languages of the world come into being?
New research quantifies how much speakers' first language affects learning a new language
Linguistic research suggests that accents are strongly shaped by the speaker's first language they learned growing up.
Why the language-ready brain is so complex
In a review article published in Science, Peter Hagoort, professor of Cognitive Neuroscience at Radboud University and director of the Max Planck Institute for Psycholinguistics, argues for a new model of language, involving the interaction of multiple brain networks.
Do as i say: Translating language into movement
Researchers at Carnegie Mellon University have developed a computer model that can translate text describing physical movements directly into simple computer-generated animations, a first step toward someday generating movies directly from scripts.
Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.
Learning a second alphabet for a first language
A part of the brain that maps letters to sounds can acquire a second, visually distinct alphabet for the same language, according to a study of English speakers published in eNeuro.
Sign language reveals the hidden logical structure, and limitations, of spoken language
Sign languages can help reveal hidden aspects of the logical structure of spoken language, but they also highlight its limitations because speech lacks the rich iconic resources that sign language uses on top of its sophisticated grammar.
Lying in a foreign language is easier
It is not easy to tell when someone is lying.
More Language News and Language Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.