UD scientists report ocean data from under Greenland's Petermann Glacier

February 15, 2017

In August 2015, University of Delaware oceanographer Andreas Muenchow and colleagues deployed the first UD ocean sensors underneath Petermann Glacier in North Greenland, which connects the great Greenland ice sheet directly with the ocean.

Petermann Glacier is the second largest floating ice shelf in the northern hemisphere.

Located approximately 16 to 2,300 feet below the glacier, the five ocean sensors are connected to a weather station at the surface, creating the first cabled observatory on a floating, moving, and rapidly melting Greenland glacier.

The researchers recently reported in the journal Oceanography that sensor data from August 2015 to February 2016 confirms that that the floating ice shelf is strongly coupled, or tied, to the ocean below and to Nares Strait, and temperatures vary with the tides and seasons.

Specifically, the paper found that the same water that has been measured in the fjord is under the glacier, lending credence to the idea that the continuity of the glacier depends on the conditions outside the glacier in the fjord.

This water is warming an average of 0.03 degrees Celsius per year, with temperatures at the deepest ocean sensors sometimes exceeding 0.3 degrees Celsius or 33 degrees Fahrenheit, Muenchow said. These temperature values are consistent at various water depths, and match data from a 2003-09 study in adjacent Nares Strait, which connects to both the Arctic and Atlantic Oceans.

"This correlation tells us this is the same water and that this is what's causing the melting of the glacier, which could influence sea level rise," said Muenchow, an associate professor of oceanography in UD's School of Marine Science and Policy, which is housed in the College of Earth, Ocean, and Environment (CEOE).

The scientists theorize that warmer Atlantic water will continue to arrive inside Petermann Fjord and below the ice shelf from Nares Strait in the next one-to-two years.
-end-
Co-authors on the paper include Keith W. Nicholls, an oceanographer with the British Antarctic Survey; Peter Washam, a UD doctoral student; and Laurie Padman, a senior scientist at Oregon State University.

University of Delaware

Related Ice Shelf Articles from Brightsurf:

Ice-binding molecules stop ice growth, act as natural antifreeze
Certain molecules bind tightly to the surface of ice, creating a curved interface that can halt further ice growth.

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Evidence: Antarctica's thinning ice shelves causing more ice to move from land into sea
New study provides the first evidence that thinning ice shelves around Antarctica are causing more ice to move from the land into the sea.

Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.

Vintage film shows Thwaites Glacier ice shelf melting faster than previously observed
Newly available archival film has revealed the eastern ice shelf of Thwaites Glacier in Antarctica is melting faster than previous estimates, suggesting the shelf may collapse sooner than expected.

Chipping away at how ice forms could keep windshields, power lines ice-free
How does ice form? Surprisingly, science hasn't fully answered that question.

Robots roaming in Antarctic waters reveal why Ross Ice Shelf melts rapidly in summer
A new paper offers fresh insight into the forces causing the world's largest ice shelf to melt.

Strong storms also play big role in Antarctic ice shelf collapse
Warming temperatures and changes in ocean circulation and salinity are driving the breakup of ice sheets in Antarctica, but a new study suggests that intense storms may help push the system over the edge.

Read More: Ice Shelf News and Ice Shelf Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.