Nav: Home

Demonstration of a single molecule piezoelectric effect

February 15, 2018

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University Olomouc demonstrated for the first time a single molecule piezoelectric effect. The study published in the Journal of the American Chemical Society represents a breakthrough in understanding the electromechanical behavior of individual molecules and provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale.

The piezoelectric effect emerges in some materials in which the mechanical and electrical properties are coupled. Either the electric field can be generated if a mechanical stress is applied (direct piezoelectric effect) or, conversely, the mechanical deformation can arise if the electric field is applied (converse piezoelectric effect).

These effects have reached numerous practical applications in automotive, smartphone, computer, medical and military industries. In our everyday life, we meet the piezoelectric effect in smartphones, microphones or lighters, it is also widely employed in airbag systems, sonars or scanning microscopes. Possible applications of the piezoelectric effect to nanotechnology are currently under the spotlight and intensively studied. However, the single molecule piezoelectric effect, which is essential for envisioned electromechanical molecular devices, has so far remained elusive.

"In a close collaboration with physicists, it was proved for the first time that a strong converse piezoelectric effect can be observed at individual molecules of the heptahelicene derivative, which is a screw-like carbon molecule resembling a spring," said Ivo Starý, the leader of the group of chemists at IOCB Prague preparing the compound.

The effect was experimentally demonstrated by the group of physicists at IP CAS at individual molecules on a silver surface using scanning probe microscopy. The group leader Pavel Jelínek explains: "The magnitude of the piezoelectric constant calculated from the experimental data is significantly higher than that one of known piezoelectric polymers and is comparable to the magnitudes measured at some inorganic materials such as zinc oxide. Moreover, we explained the origin of the single molecule piezoelectric effect by employing quantum mechanics calculations."

How does the converse piezoelectric effect work at nanoscale? The screw-like molecule endowed with an inner dipole stretches or squeezes itself depending on the strength and polarity of the outer electric field. It arises by applying a voltage bias between the silver pad and atomically sharp tip of the scanning microscope that resides over the studied molecule. As the change in a molecule height can be monitored with an ultimate accuracy, it is possible to see a molecule deformation induced by the electric field. Such a coupling of the mechanical movement of a molecule and the change in electric field, which is reciprocal by theory, represents an entry into the world of molecules doing mechanical work on one hand and molecular nanogenerators of electric energy on the other hand.
Article: O. Stetsovych, P. Mutombo, M. Švec, M. Šámal, J. Nejedlý, I. Císarová, H. Vázquez, M. Moro-Lagares, J. Berger, J. Vacek, I. G. Stará, I. Starý, P. Jelínek, Large Converse Piezoelectric Effect Measured on a Single Molecule on a Metallic Surface. J. Am. Chem. Soc. 2018, 140, 940?946.


The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences / IOCB Prague is a leading scientific institution in the Czech Republic, recognized internationally. Its primary mission is basic research in the fields of chemical biology and medicinal chemistry, organic and material oriented chemistry, chemistry of natural compounds, biochemistry and molecular biology, physical chemistry, theoretical chemistry and analytical chemistry. The Institute has a long tradition and expertise in medicinal chemistry and drug development together with the pharma industry. Antivirals discovered by Antonín Holý and developed further by Gilead Sciences revolutionized the treatment of AIDS and hepatitis B and have significantly improved lives of millions of people around the globe.

Institute of Physics of the Czech Academy of Sciences / IP CAS is a public research institute, oriented on the fundamental and applied research in physics. IP is the largest institute of the Czech Academy of Sciences and its present research program comprises six branches of physics: particle physics, the physics of condensed matter, solid state physics, optics, plasma and laser physics. These research branches also define how the institute is structured into six major research divisions.

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

Related Nanoscale Articles:

Scientists can now control thermal profiles at the nanoscale
Scientists have designed and tested an experimental system that uses a near-infrared laser to actively heat two gold nanorod antennae to different temperatures.
New study shows nanoscale pendulum coupling
In 1665, Lord Christiaan Huygens found that two pendulum clocks, hung in the same wooden structure, oscillated spontaneously and perfectly in line but in opposite directions: the clocks oscillated in anti-phase.
Research reveals liquid gold on the nanoscale
Swansea University researchers have discovered what liquid gold looks like on the nanoscale - and in doing so have mapped the way in which nanoparticles melt, which is relevant to the manufacturing and performance of nanotech devices such as bio-sensors, nanochips , gas sensors, and catalysts.
Nanoscale thermometers from diamond sparkles
The development of a novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale will have immediate applications for both industry and fundamental scientific research, scientists say.
Hyperbolic metamaterials enable nanoscale 'fingerprinting'
Hyperbolic metamaterials are artificially made structures that can be formed by depositing alternating thin layers of a conductor such as silver or graphene onto a substrate.
More Nanoscale News and Nanoscale Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...