Nav: Home

Key to predicting climate change could be blowing in the wind, researchers find

February 15, 2018

Dust that blew into the North Pacific Ocean could help explain why the Earth's climate cooled 2.7 million years ago, according to a new study published in the journal Science Advances.

One of the co-authors was Alex Pullen, an assistant professor of environmental engineering and earth sciences at Clemson University.

"Why study the past? It's a great predictor of the future," he said. "The findings of this study were both interesting and very unexpected."

Researchers were interested in dust because when it blows off land and into the ocean, the iron in it fertilizes the water like farmers do their fields. Through photosynthesis, tiny organisms that live in the ocean surface waters pull carbon-dioxide out of the atmosphere, which usually means cooler temperatures.

The biggest surprise in the study was that precipitation, rather than dryness, was the most important factor for adding East Asian dust to the atmosphere and oceans leading up to the ancient climate change, Pullen said.

It may seem counterintuitive, he said, because "most people associate dust emission with aridity and deserts, not with precipitation."

But researchers believe they have an idea of what happened.

The monsoon precipitation intensified, and the increase caused erosion along the Tibetan Plateau and lower elevation areas nearby in what today is China, researchers found. Wind carried the relatively loose sediment into the North Pacific Ocean, where it likely helped spur photosynthesis.

The research focused on a time that marked a change between a period of high carbon-dioxide levels in the atmosphere similar to modern day and much lower levels similar to the period before the industrial revolution, Pullen said.

The research helps explain what caused the Earth to go into the glacial and interglacial periods that have dominated ever since, he said.

But the findings do not suggest humans are off the hook on warming global temperatures, Pullen said.

Researchers were dealing in geologic time-- millions of years-- and the geologic record isn't always detailed enough to reflect what might have happened in the span of a few hundred years, he said. That would be enough to melt the ice caps and put islands and coastlines underwater, Pullen said.

The future climate could look like the Pliocene Epoch, which was 5.3 million to 2.5 million years ago, said Pullen, who is a geologist.

"Now we just have to figure out what the Pliocene looked like everywhere on Earth," he said. "That's going to be difficult because the Pliocene rock record doesn't exist everywhere. But we need to collect as much information from the Pliocene as we can to improve climate models and have a better understanding of what is in store for our future."

The study was an international collaboration between Junsheng Nie, Wenbin Peng, and Zhao Wang of Lanzhou University in China; Pullen; and Carmala N. Garzione of the University of Rochester.

The team's findings were drawn from detailed analysis of sedimentary rock in the Chinese Loess Plateau, an area of East China that has been collecting dust for at least the past 8 million years.

David Freedman, chair of Clemson's Department of Environmental Engineering and Earth Sciences, congratulated Pullen and the team on their work.

"Publishing in Science Advances is a significant accomplishment," he said. "Dr. Pullen is helping draw positive attention to the department, boosting our reputation for excellent research."
-end-
Science Advances is a peer-reviewed, multidisciplinary, open-access scientific journal established in early 2015 and published by the American Association for the Advancement of Science.

The article is titled, "Pre-Quaternary decoupling between Asian aridification and high dust accumulation rates."

Clemson University

Related Atmosphere Articles:

Primitive atmosphere discovered around 'Warm Neptune'
A pioneering new study uncovering the 'primitive atmosphere' surrounding a distant world could provide a pivotal breakthrough in the search to how planets form and develop in far-flung galaxies.
NASA's MAVEN reveals Mars has metal in its atmosphere
Mars has electrically charged metal atoms (ions) high in its atmosphere, according to new results from NASA's MAVEN spacecraft.
Northern oceans pumped CO2 into the atmosphere
The Norwegian Sea acted as CO2 source in the past.
Study opens new questions on how the atmosphere and oceans formed
A new study led by The Australian National University has found seawater cycles throughout the Earth's interior down to 2,900km, much deeper than previously thought, reopening questions about how the atmosphere and oceans formed.
How a moon slows the decay of Pluto's atmosphere
A new study from the Georgia Institute of Technology provides additional insight into relationship between Pluto and its moon, Charon, and how it affects the continuous stripping of Pluto's atmosphere by solar wind.
Fossil fuel formation: Key to atmosphere's oxygen?
For the development of animals, nothing -- with the exception of DNA -- may be more important than oxygen in the atmosphere.
Researchers dial in to 'thermostat' in Earth's upper atmosphere
A team led by the University of Colorado Boulder has found the mechanism behind the sudden onset of a 'natural thermostat' in Earth's upper atmosphere that dramatically cools the air after it has been heated by violent solar activity.
New biochar model scrubs CO2 from the atmosphere
New Cornell University research suggests an economically viable model to scrub carbon dioxide from the atmosphere to thwart global warming.
Venus-like exoplanet might have oxygen atmosphere, but not life
The distant planet GJ 1132b intrigued astronomers when it was discovered last year.
Middle atmosphere in sync with the ocean
In the late 20th century scientists observed a cooling at the transition between the troposphere and stratosphere at an altitude of about 15 kilometers.

Related Atmosphere Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".