Nav: Home

Key to predicting climate change could be blowing in the wind, researchers find

February 15, 2018

Dust that blew into the North Pacific Ocean could help explain why the Earth's climate cooled 2.7 million years ago, according to a new study published in the journal Science Advances.

One of the co-authors was Alex Pullen, an assistant professor of environmental engineering and earth sciences at Clemson University.

"Why study the past? It's a great predictor of the future," he said. "The findings of this study were both interesting and very unexpected."

Researchers were interested in dust because when it blows off land and into the ocean, the iron in it fertilizes the water like farmers do their fields. Through photosynthesis, tiny organisms that live in the ocean surface waters pull carbon-dioxide out of the atmosphere, which usually means cooler temperatures.

The biggest surprise in the study was that precipitation, rather than dryness, was the most important factor for adding East Asian dust to the atmosphere and oceans leading up to the ancient climate change, Pullen said.

It may seem counterintuitive, he said, because "most people associate dust emission with aridity and deserts, not with precipitation."

But researchers believe they have an idea of what happened.

The monsoon precipitation intensified, and the increase caused erosion along the Tibetan Plateau and lower elevation areas nearby in what today is China, researchers found. Wind carried the relatively loose sediment into the North Pacific Ocean, where it likely helped spur photosynthesis.

The research focused on a time that marked a change between a period of high carbon-dioxide levels in the atmosphere similar to modern day and much lower levels similar to the period before the industrial revolution, Pullen said.

The research helps explain what caused the Earth to go into the glacial and interglacial periods that have dominated ever since, he said.

But the findings do not suggest humans are off the hook on warming global temperatures, Pullen said.

Researchers were dealing in geologic time-- millions of years-- and the geologic record isn't always detailed enough to reflect what might have happened in the span of a few hundred years, he said. That would be enough to melt the ice caps and put islands and coastlines underwater, Pullen said.

The future climate could look like the Pliocene Epoch, which was 5.3 million to 2.5 million years ago, said Pullen, who is a geologist.

"Now we just have to figure out what the Pliocene looked like everywhere on Earth," he said. "That's going to be difficult because the Pliocene rock record doesn't exist everywhere. But we need to collect as much information from the Pliocene as we can to improve climate models and have a better understanding of what is in store for our future."

The study was an international collaboration between Junsheng Nie, Wenbin Peng, and Zhao Wang of Lanzhou University in China; Pullen; and Carmala N. Garzione of the University of Rochester.

The team's findings were drawn from detailed analysis of sedimentary rock in the Chinese Loess Plateau, an area of East China that has been collecting dust for at least the past 8 million years.

David Freedman, chair of Clemson's Department of Environmental Engineering and Earth Sciences, congratulated Pullen and the team on their work.

"Publishing in Science Advances is a significant accomplishment," he said. "Dr. Pullen is helping draw positive attention to the department, boosting our reputation for excellent research."
-end-
Science Advances is a peer-reviewed, multidisciplinary, open-access scientific journal established in early 2015 and published by the American Association for the Advancement of Science.

The article is titled, "Pre-Quaternary decoupling between Asian aridification and high dust accumulation rates."

Clemson University

Related Atmosphere Articles:

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.
Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.
The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.
An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.
Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.
Astronomers find exoplanet atmosphere free of clouds
Scientists have detected an exoplanet atmosphere that is free of clouds, marking a pivotal breakthrough in the quest for greater understanding of the planets beyond our solar system.
Helium detected in exoplanet atmosphere for the first time
Astronomers have detected helium in the atmosphere of a planet that orbits a star far beyond our solar system for the very first time.
Mountain erosion may add CO2 to the atmosphere
Scientists have long known that steep mountain ranges can draw carbon dioxide (CO2) out of the atmosphere -- as erosion exposes new rock, it also starts a chemical reaction between minerals on hill slopes and CO2 in the air, 'weathering' the rock and using CO2 to produce carbonate minerals like calcite.
The changing chemistry of the Amazonian atmosphere
Researchers have been debating whether nitrogen oxides (NOx) can affect levels of OH radicals in a pristine atmosphere but quantifying that relationship has been difficult.
Hubble observes exoplanet atmosphere in more detail than ever before
An international team of scientists has used the NASA/ESA Hubble Space Telescope to study the atmosphere of the hot exoplanet WASP-39b.
More Atmosphere News and Atmosphere Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.