Nav: Home

Fast-acting, readily available gas may mitigate blast-induced brain injury

February 15, 2018

The inert gas has been used for the first time to try and reduce the impact of traumatic brain injuries (TBI) caused by blasts such as those in conflict zones and terror attacks.

Traumatic brain injuries are frequently caused by blunt force trauma, but there has been an increase in TBIs caused by blasts (bTBIs). Blast TBI is one on the most common injuries experienced by soldiers in recent conflicts, and is dubbed a 'signature injury' of the conflicts in Iraq and Afghanistan. Civilians exposed to industrial accidents or terrorist attacks are also at risk.

Unlike blunt force trauma, where damage/injury is usually localised to one area of the brain, blasts create a shockwave that affects the whole brain - causing widespread damage. This can cause anxiety, depression, and problems with cognition, memory and sleep.

Previously, Dr Robert Dickinson and colleagues from Imperial College London showed that xenon gas helped limit brain damage and improve long term neurological outcomes in mice which had suffered blunt force brain injury.

Now, the same research group has found for the first time that xenon can also limit blast-induced brain injury from developing in mouse brain tissue exposed to a blast shockwave, in a study published in the Journal of Neurotrauma.

In this study, the researchers from Imperial's Department of Surgery and Cancer and the Royal British Legion Centre for Blast Injury Studies, applied xenon to slices of mouse brain tissue after exposing them to blast shockwaves that emulated those produced by improvised explosive devices (IEDs).

By using a dye that highlights damaged brain cells, they were able to monitor injury development in the slices up to three days after blast exposure. They compared slices given xenon treatment starting one hour after exposure to blast shockwaves, with slices exposed to blast without xenon treatment.

They then assessed injury development at 24, 48 and 72 hours after blast exposure, and found that the slices treated with xenon suffered significantly less blast-induced injury than the untreated control slices. The blast-injured slices treated with xenon were not significantly different to uninjured slices at 24 hours and 72 hours after injury, indicating that xenon prevented injury from developing.

Xenon reaches the brain within a few minutes after inhalation, so if these preliminary results translate to humans it could be a viable treatment option after blasts occur. Lead author Dr Rita Campos-Pires from Imperial said: "One of the most insidious aspects of TBI in general, and it is believed bTBI also, is that the damage can continue to grow long after the initial injury. The secondary injury can be many times worse than the primary injury, so our goal is to stop the damage from spreading as early as possible."

Xenon is used in hospitals as a general anaesthetic, so it is already known to be safe in humans. The authors say more research is needed before clinical trials in bTBI patients, but that their results are a positive step in this direction.

Dr Dickinson said: "Blast TBI has not been as widely studied as other types of brain trauma, but is now becoming recognised as a specific injury that can result in debilitating symptoms. Our discovery that xenon reduces blast-induced injury in mouse brain tissue is very encouraging, and will prompt further research in this area."

There is currently no standard treatment for bTBI. The authors say this preliminary research may be a first step before exploring xenon's benefits in humans who suffer bTBI. The next stage will be to test xenon in live rodents exposed to similar conditions.
-end-
The research was funded by the Royal Centre for Defence Medicine, the Royal British Legion Centre for Blast Injury Studies, the Medical Research Council and the Fundação para a Ciência e a Tecnologia, Portugal.

Imperial College London

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.