MSU scientists discovered a new way for sensing the levels of an important amino acid

February 15, 2018

A team from the Faculty of Chemistry of MSU together with its colleagues suggested a new method for determining the levels of cysteine - a substance used in many chemical drugs - with the help of gold nanoparticles. Unlike current methods, this one does not require complex reactions or expensive equipment. An article with the results of the study was published in Sensors and Actuators B journal.

Cysteine is an amino acid found in keratins (proteins contained in nails, hair, and feathers). It deactivates toxins, acts as an antioxidant, protects against X-rays and radiation, and is used in medicinal drugs and food additives. Moreover, its presence in blood may be an indication of certain conditions, such as Alzheimer's disease or cardiovascular, liver, or skin disorders. Therefore, determining the level of cysteine in biological liquids can be considered a diagnostic tool, and in drugs - a quality control method.

As a rule, the content of cysteine in a solution is detected using the luminescence method, but it requires expensive equipment, additional procedures, and qualified personnel. Therefore, a simpler and cheaper procedure is required.

The authors of the study suggested using gold nanoparticles that are 20 nanometers in diameter and require a simple production method. In a solution they form a stable colloid system, i.e. don't sink down to the bottom of the vessel.

"It is very easy to obtain such particles, especially the non-modified ones. One just has to take a gold compound, say, chloroaudic acid, and sodium citrate (a salt of citric acid), mix them and heat up - that's all the synthesis that is required. The process is simple and can be carried out in almost any lab," commented Vladimir Apyari, a co-author of the work, senior research assistant of the Faculty of Chemistry, MSU, and doctor of chemistry.

The scientists noticed gold nanoparticles due to their ability to quickly change color (from ruby red to blue) upon aggregation into bigger formations. Because of this property they are used to detect ions of different metals, anions, and organic compounds. When nanoparticles react with cysteine, they are aggregated, and the solution's spectral characteristics and colour change. These changes can be measured with a spectrophotometer or even seen with a naked eye. The reaction takes a couple of minutes.

Cysteine detection in a solution has certain disadvantages. For example, no spectrophotometer analysis can be carried out in a muddy or coloured environment, and cleansing is required. To avoid it, nanoparticles may be placed on the surface of a solid material, such as polyurethane foam. The particles are completely consumed by polyurethane foam in 15-20 minutes.

According to the authors, in the future their study may help to develop new detection methodologies. In some of them more complicated nanoparticles with added analytical groups (chemical structures that bind with the analyzed substance) may be used. Therefore, the method may be adapted to detect and determine the levels of other compositions.

The study was carried out in collaboration with scientists from the National Research Center "Kurchatov Institute".

Lomonosov Moscow State University

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to