Nav: Home

Researchers find adult endothelial stem cells that can make fully functional blood vessels

February 15, 2018

Osaka - The proper function of blood vessels is essential to life: blood vessels are responsible for transporting oxygen-rich red blood cells, nutrients, and immune cells throughout the body, to name just a few functions. Defects in blood vessels can correspondingly lead to a variety of life-threatening diseases. Stem cells, which are undifferentiated cells that can generate new tissues, have significant potential in regenerative medicine and treating various disorders. In blood vessels, the existence of tissue-resident stem cells has been intensely debated. A research team centered at Osaka University may now have discovered the elusive stem cell, providing evidence for adult vascular endothelial stem cells (VESCs) capable of generating fully functional blood vessels.

The research team had previously identified a population of endothelial cells (ECs), isolated from the inner most layer of blood vessels, with properties resembling those of stem cells. The cells were actually isolated by functional analysis, so the team was interested in finding molecular markers that specifically define endothelial stem cells. The research was reported in Cell Stem Cell.

"Our approach was to look for a cell-surface protein that is highly expressed in the endothelial stem-like population, but not in other ECs," explains Nobuyuki Takakura, who led this study. "Once we found a clear stem marker of ECs, we could then sort the cells based on the proteins expressed on their surface. This would theoretically allow us to isolate a homogeneous pool of candidate endothelial stem cells."

The researchers found a highly abundant glycoprotein, called CD157, expressed in the small fraction of EC population. After isolating just the ECs that expressed CD157, they set out to determine whether they were truly VESCs. The key characteristic of stem cells is their ability to regenerate themselves, so they hypothesized that the CD157-positive ECs would be able to form new blood vessels. The team tested this idea by experimentally injuring mice, damaging the blood vessels that supply blood to the liver, and injecting them with CD157-positive ECs isolated from the liver.

"The results were more than we could have hoped for," Takakura adds. "A month after transplantation, the CD157-enriched cells generated fully functional portal veins, portal venules, sinusoids, hepatic venules, and arteries--essentially, every type of blood vessel found in a healthy liver. We were very encouraged by the result, so we followed up by injecting mice with just one cell each. The success rate was smaller, but even a single cell was enough to reconstitute their blood vessels."

In addition to repairing injured tissue, stem cells are crucial to maintaining healthy tissue. As further confirmation that they had discovered a VESC, the team used a fluorescent reporter to follow the fate of these cells in non-injured healthy mice. A year later, the cells continued to replenish normal blood vessel tissue in the liver-precisely what would be expected of functioning, native stem cells.

Following the successful liver repair experiments, the team sought to determine how versatile the cells might be in treating other blood vessel-related diseases. Hemophilia A, a rare bleeding disorder in which blood is unable to clot properly, is caused by a genetic mutation that prevents liver blood vessels from making clotting factor VIII (FVIII). When VESCs collected from healthy mice were injected into mice with hemophilia A, the cells began generating new liver blood vessels--and the level of FVIII in the blood shot up, from less than 1% of normal to over 60%.

Notably, the therapeutic potential of these cells does not appear to be limited to liver defects. The researchers also used VESCs from muscle tissue to treat limb ischemia in mice, where a lack of oxygenated blood can lead to tissue damage and foot necrosis. The study potentially represents a turning point in cell-based therapies for blood vessel disorders.

"Our findings show that CD157-positive vascular endothelial stem cells give rise to a hierarchy of cell types that can repair vascular injury and maintain the normal blood vessel architecture," Takakura says. "We believe these findings represent an entirely new way of thinking about how blood vessels are formed and, ultimately, how stem cells can be used to treat disorders related to blood vessel malfunction."
-end-
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Osaka University

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.