Nav: Home

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

February 15, 2018

A group of NUST MISIS's young scientists, for the very first time in Russia, has presented a new therapeutic material based on nanofibers made of polycaprolactone modified with a thin-film antibacterial composition and plasma components of human blood. Biodegradable bandages made from these fibers will accelerate the growth of tissue cells twice as quickly, contributing to the normal regeneration of damaged tissues, as well as preventing the formation of scars in cases of severe burns.

In regenerative medicine, and particularly in burn therapy, the effective regeneration of damaged skin tissue and the prevention of scarring are usually the main goals. Scars form when skin is badly damaged, whether through a cut, burn, or a skin problem such as acne or fungal infection.

Scar tissue mainly consists of irreversible collagen and significantly differs from the tissue it replaces, having reduced functional properties. For example, scars on skin are more sensitive to ultraviolet radiation, are not elastic, and the sweat glands and hair follicles are not restored in the area.

«The solution of this medical problem was proposed by the researchers from the NUST MISIS Inorganic Nanomaterials Laboratory, led by PhD Anton Manakhov, a senior researcher. The team of scientists has managed to create multi-layer «bandages» made of biodegradable fibers and multifunctional bioactive nanofilms, which [the bandages] prevent scarring and accelerate tissue regeneration», said Alevtina Chernikova, Rector of NUST MISIS.

The addition of the antibacterial effect by the introduction of silver nanoparticles or joining antibiotics, as well as the increase of biological activity to the surface of hydrophilic groups (-COOH) and the blood plasma proteins have provided unique healing properties to the material.

A significant acceleration of the healing process, the successful regeneration of normal skin covering tissue, and the prevention of scarring on the site of burnt or damaged skin have been observed when applying these bandages made of the developed material to an injured area. The antibacterial components of multifunctional nanofibers decrease inflammation, and the blood plasma with an increased platelet level - vital and multi-purposed for every element in the healing process - stimulates the regeneration of tissues. The bandages should not be removed or changed during treatment as it may cause additional pain to the patient. After a certain period of time, the biodegradable fiber simply «dissolves» without any side effects.

«With the help of chemical bonds, we were able to create a stable layer containing blood plasma components (growth factors, fibrinogens, and other important proteins that promote cell growth) on a polycaprolactone base. The base fibers were synthesized by electroforming. Then, with the help of plasma treatment, to increase the material`s hydrophilic properties, a polymer layer containing carboxyl groups was applied to the surface. The resulting layer was enriched with antibacterial and protein components», noted Elizabeth Permyakova, one of the project members and laboratory scientists.

The research team has already conducted a series of pre-clinical trials jointly with the Research Institute of Experimental and Clinical Medicine (Novosibirsk, Russia). In vitro results have shown that with the application of these innovative bandages the regeneration process has been accelerated twice as quickly. In the near future, the team expects to get results of in vivo drug testing.
-end-


National University of Science and Technology MISIS

Related Antibacterial Articles:

Novel antibacterial wound cover could prevent thousands of infections each year
A new type of wound dressing could improve thousands of people's lives, by preventing them from developing infections.
Rationale and prospects of targeting bacterial 2-component systems
Antimicrobial resistance is a major societal problem as there are resistant bacteria to any antibiotic available, and they spread across countries and continents.
NIH-funded Antibacterial Resistance Leadership Group details progress, challenges
The National Institute of Allergy and Infectious Diseases provided funding to establish an Antibacterial Resistance Leadership Group to develop, prioritize and implement a clinical research agenda to address the growing public health threat of antibiotic resistance.
Compound from deep-water marine sponge could provide antibacterial solutions for MRSA
A compound extracted from a deep-water marine sponge collected near the Bahamas is showing potent antibacterial activity against the drug resistant bacteria methicillin-resistant Staphylococcus aureus (MRSA) also called the 'super bug.' Researchers have named the antibiotic compound 'dragmacidin G' and have shown that it has a broad spectrum of biological activity including inhibition of MRSA as well as a panel of pancreatic cancer cell lines.
Northern Quebec lichen yields 2 unique molecules and several antibacterial compounds
Two unique molecules have been discovered by Université Laval researchers in a species of lichen growing in northern Quebec.
Better diagnosis of fungal infections key to reducing antibiotic resistance
Poor diagnosis worldwide of fungal disease causes doctors to overprescribe antibiotics, increasing harmful resistance to antimicrobial drugs, according to a paper published today in Emerging Infectious Diseases.
Dental implants with antibacterial activity
Mouth infections are currently regarded as the main reason why dental implants fail.
Social status affects the immune system of macaques
The social status of a rhesus macaque affects the nature of its immune system, where low-status animals show greater antibacterial responses and high-status animals tend to have greater antiviral responses.
HKU Chemists achieve breakthrough in antibacterial drug research
The research team of Dr Xuechen Li at the HKU Department of Chemistry, together with collaborators at the University of Central Florida (Dr Yu Yuan), USA and the Hong Kong Polytechnic University (Dr Sheng Chen), reported their research findings on the synthesis of a newly discovered
Fighting the gram-negatives
Many microorganisms produce secondary natural products, the potential antibiotic effects of which are extensively investigated.

Related Antibacterial Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.