New research highlights how cancer cells repair themselves following proton beam therapy

February 15, 2018

Collaborative research conducted in Liverpool and Oxford, published in The Red Journal, identifies the specific cellular process that helps cancer cells damaged as a result of proton beam therapy, repair themselves.

Proton beam therapy (PBT) is a type of radiation treatment that uses protons to treat cancer. A proton is a positively charged particle and a machine called a synchrotron or cyclotron speeds up the protons.

The protons' speed determines the energy level, and high energy protons travel deeper in the body than low energy ones. The key advantage of PBT is that it can deliver the radiation dose specifically to the tumour, and limits damage to normal, healthy tissue.

Low energy protons, in comparison to high energy protons, introduce increased levels of damage to the DNA that is in close proximity (called complex DNA damage) which persists in cells and contributes significantly to the cell killing effects of PBT. The precise mechanism of how the DNA in the targeted cancer cell repairs itself has been until recently unknown.

Researchers from the University of Liverpool and Cancer Research UK / Medical Research Council Oxford Institute for Radiation Oncology conducted a study to identify the specific process that allows irradiated cancer cells following PBT to repair themselves.

The research, led by Dr Jason Parsons from the University of Liverpool, treated a number of different cancer cells to both high energy and low energy protons and measured the levels of complex DNA damage and how the cancer cells initiate their repair which correlates to their survival.

Part of the research was carried out at The Clatterbridge Cancer Centre's National Eye Proton Therapy Centre, home to the UK's only proton therapy beam

Dr Parsons, said: "With the increasing use of PBT in the UK for cancer treatment, stimulated by the UK Government's £250 million investment in PBT Centres in Manchester and London that will be operational from this year and 2020, respectively, our work has revealed new details on the radiobiology of protons at the molecular and cellular level.

"Using currently the only clinically operating proton beam therapy facility at The Clatterbridge Cancer Centre in Wirral, our research shows that protons at different energies display distinct effects on DNA which have a major impact on their efficiency in causing cancer cell killing.

"Low energy protons cause increases in complex DNA damage, which contributes significantly to decreased cell survival versus high energy protons and conventional x-ray irradiation."

Andrzej Kacperek Consultant Proton Physicist at The Clatterbridge Cancer Centre, said: "This is an important milestone in our understanding of proton beam therapy in the UK and abroad, and will help to guide further research in the near future, and hopefully identify ways of making PBT more efficient and effective for cancer therapy.

"Providing the technology for this research illustrates the importance of a collaborative approach in developing cancer treatment."
-end-
The research was funded by grants from North West Cancer Research and by the Medical Research Council. The full paper, entitled 'Complex DNA Damage Induced by High Linear Energy Transfer Alpha-Particles and Protons Triggers a Specific Cellular DNA Damage Response', can be found here http://www.redjournal.org/article/S0360-3016(17)34100-7/fulltext

University of Liverpool

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.