Nav: Home

Hunting is changing forests, but not as expected

February 15, 2018

When it comes to spreading their seeds, many trees in the rainforest rely on animals, clinging to their fur or hitching a ride within their digestive tract. As the seeds are spread around, the plants' prospects for survival and germination are increased.

But in many tropical forests, over-hunting is diminishing the populations of those animals, and, as a result, changing the make-up of the forests themselves.

A new study of the Amazon rainforest by researchers at UConn and the San Diego Zoo Institute for Conservation and Research, published in the Journal of Ecology, examines what happens to plants if their seed dispersers are no longer present. They found that theoretical models predicting a dire impact on plant communities and huge decreases in the amount of carbon stored in tropical forests are not supported by the facts. Instead, the effects on the ecosystem are less straightforward and less immediately devastating.

"Yes, there is a negative effect, but there isn't 100 percent mortality," says Robert Bagchi, assistant professor of ecology and evolutionary biology at UConn. "The story is more complex and much more subtle."

Whereas the models used in the previous studies did not use actual data on items such as mortality, survival, growth, and spatial distribution, Bagchi and his fellow researchers explored the question in greater detail, using a statistical technique they recently developed with extensive data collected on tree communities in the 80,000 km2 Madre de Dios river basin, located in the southeastern corner of Peru's Amazon rainforest.

In Western Amazonia, as many as two-thirds of all tree species rely on native, fruit-eating mammals such as spider monkeys and tapirs, or birds like guans, trumpeters and toucans, who are able to travel fairly large distances and carry any ingested seeds far from their parent trees.

Dispersal is advantageous for seeds because spreading out will give seedlings an edge over specialized natural predators who might otherwise wipe out aggregations of undispersed plants.

"The idea is that the seeds escape," says Bagchi. "A lot of pathogens and insects are quite specific about which plants they will eat, and if there is no dispersal and their desired plants are densely aggregated, those plants will be clobbered."

In addition, the tree species dispersed by these animals also store the most carbon.

Unfortunately, the large-bodied animals and birds are the favorite quarry of hunters for bush meat.

The researchers examined tree communities in the tropical rain forests of Western Amazonia, in terms of forest spatial organization and carbon storage capacity. They did find that tree communities in hunted forests appear to be undergoing a reorganization, where saplings of species that rely on large hunted animals for dispersal are now growing closer to each other and forming denser clumps in hunted forests.

But the long-term implications for biodiversity and the biomass of forests are not yet clear. And the expectation that without their dispersers, seeds of these plant species will land in the "kill zone" of insects and diseases under their parents and be replaced by other species that store less carbon, culminating in huge decreases in the amount of carbon stored in tropical forests, has not materialized.

A number of factors could be contributing to the reason that previous theories are not proving true, Bagchi says.

Smaller seed dispersers that often increase when their larger competitors are hunted out may be compensating. Additionally, the trees analyzed in the study were already at least 10-15 years old, so follow-up studies will instead focus on the early lives of these trees, starting at the germination stage.

Questions the researchers hope to pursue include, What are the survival rates of undispersed seeds in hunted forests? Is limited dispersal by smaller animals enough to ensure a seed's survival? How do these stages fit together - does high survival at a later stage compensate for low survival of undispersed seeds?

"We can't simplify the process to just a linear one," says Bagchi. "We need data following the whole process, from seed dispersal to trees growing into adults."

Bagchi also cautions that although these findings are somewhat hopeful in light of previous modeling studies, tropical forests in South America, Asia, and Africa are becoming ever more stripped of their diversity of flora and fauna, fundamentally changing the structure of these complex systems.
-end-
This research was supported by grants from the National Geographic Society Grant Program #9487-14; the Seventh Framework Programme of the European Commission #GA-2010-267243; Directorate for Biological Sciences of the National Science Foundation #0742830. The DOI for the study is 10.1111/1365-2745.12929.

University of Connecticut

Related Tropical Forests Articles:

NASA examines potential tropical or sub-tropical storm affecting Gulf states
NASA's Global Precipitation Measurement mission or GPM core satellite passed over a developing low pressure area in the Gulf of Mexico and gathered two days of rainfall and storm height information.
Lianas stifle tree fruit and seed production in tropical forests
Vines compete intensely with trees. Their numbers are on the rise in many tropical forests around the world.
'Narco-deforestation' study links loss of Central American tropical forests to cocaine
Central American tropical forests are beginning to disappear at an alarming rate, threatening the livelihood of indigenous peoples there and endangering some of the most biologically diverse ecosystems in North America.
Long-term fate of tropical forests may not be as dire as believed, says CU Boulder study
Conventional wisdom has held that tropical forest growth will dramatically slow with high levels of rainfall.
Climate policies alone will not save Earth's most diverse tropical forests
Many countries have climate-protection policies designed to conserve tropical forests to keep their carbon locked up in trees.
Smart road planning could boost food production while protecting tropical forests
Conservation scientists have used layers of data on biodiversity, climate, transport and crop yields to construct a color-coded mapping system that shows where new road-building projects should go to be most beneficial for food production at the same time as being least destructive to the environment.
Road planning 'trade off' could boost food production while helping protect tropical forests
Scientists hope a new approach to planning road infrastructure that could increase crop yield in the Greater Mekong region while limiting environmental destruction will open dialogues between developers and the conservation community.
Natural regeneration may help protect tropical forests
A new article summarizes the findings of 16 studies that illustrate how natural regeneration of forests, a low-cost alternative to tree planting, can contribute significantly to forest landscape restoration in tropical regions.
NASA sees Tropical Storm Nicole going 'extra-tropical'
Tropical Storm Nicole was becoming extra-tropical when the NASA-NOAA Suomi NPP satellite passed over it from space and captured a visible picture of the storm.
Can't see the wood for the climbers -- the vines threatening our tropical forests
Woody climbing vines, known as lianas, are preventing tropical forests from recovering and are hampering the ability of forests to store carbon, scientists are warning.

Related Tropical Forests Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...