How the cuttlefish spikes out its skin: Neurological study reveals surprising control

February 15, 2018

WOODS HOLE, Mass. -- Wouldn't it be useful to suddenly erect 3D spikes out of your skin, hold them for an hour, then even faster retract them and swim away? Octopus and cuttlefish can do this as a camouflage tactic, taking on a jagged outline to mimic coral or other marine hiding spots, then flattening the skin to jet away. A new study clarifies the neural and muscular mechanisms that underlie this extraordinary defense tactic, conducted by scientists from the Marine Biological Laboratory (MBL), Woods Hole, and the University of Cambridge, U.K. The study is published in iScience, a new interdisciplinary journal from Cell Press.

"The biggest surprise for us was to see that these skin spikes, called papillae, can hold their shape in the extended position for more than an hour, without neural signals controlling them," says Paloma Gonzalez-Bellido, a lecturer in neuroscience at University of Cambridge and a former staff scientist at the MBL. This sustained tension, the team found, arises from specialized musculature in papillae that is similar to the "catch" mechanism in clams and other bivalves.

"The catch mechanism allows a bivalve to snap its shell shut and keep it shut, should a predator come along and try to nudge it open," says corresponding author Trevor Wardill, a research fellow at the University of Cambridge and a former staff scientist at the MBL. Rather than using energy (ATP) to keep the shell shut, the tension is maintained by smooth muscles that fit like a lock-and-key, until a chemical signal (neurotransmitter) releases them. A similar mechanism may be at work in cuttlefish papillae, the scientists found.

Gonzalez-Bellido and Wardill began this study in 2013 in the laboratory of MBL Senior Scientist Roger Hanlon, the leading expert on cephalopod camouflage. Hanlon's lab had been the first to describe the structure, function, and biomechanics of skin-morphing papillae in cuttlefish (Sepia officinalis), but their neurological control was unknown.

Hanlon suggested the team look for the "wiring" that controls papillae action in the cuttlefish. As reported here, they discovered a motor nerve dedicated exclusively to papillary and skin tension control that originates not in the brain, but in a peripheral nerve center called the stellate ganglion.

Surprisingly, they also found that the neural circuit for papillae action is remarkably similar to the neural circuit in squid that controls skin iridescence. Since cuttlefish don't have tunable iridescence, and squid don't have papillae, this finding raises interesting questions about the evolution and function of the neural circuit in different species.

"We hypothesize that the neural circuit for iridescence and for papillae control originates from a common ancestor to squid and cuttlefish, but we don't know that yet. This is for future work," Gonzalez-Bellido says.

"This research on neural control of flexible skin, combined with anatomical studies of the novel muscle groups that enable such shape-shifting skin, has applications for the development of new classes of soft materials that can be engineered for a wide array of uses in industry, society, and medicine," Hanlon says.
-end-
Citation:

Gonzalez-Bellido, Paloma T., Alexis T. Scaros, Roger T. Hanlon, and Trevor J. Wardill (2018) Neural control of dynamic 3-dimensional skin papillae for cuttlefish camouflage. iScience doi: 10.1016/j.isci.2018.01.001

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery - exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Marine Biological Laboratory

Related Squid Articles from Brightsurf:

Bacteria convince their squid host to create a less hostile work environment
Bacteria living symbiotically within the Hawaiian bobtail squid can direct the host squid to change its normal gene-expression program to make a more inviting home, according to a new study by researchers at the University of Hawai'i.

Squid jet propulsion can enhance design of underwater robots, vehicles
Squids use a form of jet propulsion that is not well understood, especially when it comes to their hydrodynamics under turbulent flow conditions.

Immune protein orchestrates daily rhythm of squid-bacteria symbiotic relationship
New research led by University of Hawai'i at Mānoa scientists revealed that, in the mutually beneficial relationship between with the Hawaiian bobtail squid and the luminescent bacterium, Vibrio fischeri, an immune protein called ''macrophage migration inhibitory factor'' is the maestro of daily rhythms.

How the Humboldt squid's genetic past and present can secure its future
Marine biologists studying the genetic structure of the Humboldt squid population found it is vulnerable to overfishing by fleets on its migration path.

UCI scientists engineer human cells with squid-like transparency
In a paper published today in Nature Communications, scientists at the University of California, Irvine described how they drew inspiration from cephalopod skin to endow mammalian cells with tunable transparency and light-scattering characteristics.

Squid studies illuminate neural dysfunction in ALS; suggest new route to therapy
Yuyu Song of Harvard Medical School was a Grass Fellow at the Marine Biological Laboratory (MBL) when she took advantage of a powerful research organism in neuroscience, the local squid, to start asking how a mutant protein associated with familial ALS behaves under controlled conditions.

Fossil reveals evidence of 200-million-year-old 'squid' attack
Researchers say a fossil found on the Jurassic coast of southern England in the 19th century demonstrates the world's oldest known example of a squid-like creature attacking its prey.

New genetic editing powers discovered in squid
Revealing yet another super-power in the skillful squid, scientists at the Marine Biological Laboratory have discovered that squid massively edit their own genetic instructions not only within the nucleus of their neurons, but also within the axon -- the long, slender neural projections that transmit electrical impulses to other neurons.

Stanford researcher investigates how squid communicate in the dark
Researchers begin to reveal how social squid communicate in the near-blackness of the deep sea.

Gene regulatory factors enable bacteria to kill rivals and establish symbiosis in a squid
Two factors that control the expression of a key gene required by luminescent bacteria to kill competing bacterial cells have been identified.

Read More: Squid News and Squid Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.