Metabolomics, a promising tool for advancing in treatment personalization of oncological patients

February 15, 2018

Metabolomics, the analysis of the complete set of metabolites in a defined biological compartment, is a relatively novel approach. Metabolomics studies have been successfully applied to get a better understanding of many diseases, including a number of neoplastic processes. In this context, it is important to underline that cancer patients exhibit metabolic profiles that are different from those of healthy individuals and patients with benign diseases. Moreover, the site, the stage, and the location of the tumors have been shown to further alter the metabolic composition.

Currently, tumors are defined not only by their location but also by their molecular characteristics. The identification of specific mutations in tumors has started to play a critical role when determining therapeutic treatments. However, that information is not currently available for the majority of cancers, and the existing biomarkers are far from being optimal. Furthermore, there is considerable heterogeneity within the current definitions of pathological process, exemplified by the fact that patients who are given an identical diagnosis react differently to the same therapy and have different outcomes. In this context, metabolomics, in combination with other "omics" approaches, could contribute to get a deeper insight into the molecular mechanisms underlying pathological processes, thus facilitating the classification of patients and their therapeutic treatment.

Precision medicine promises to tailor therapies for each individual by delivering more effective drug treatments, while avoiding or reducing adverse drug reactions. Towards this end, considerable efforts have been made over the last few years in the field of pharmacogenomics, with a focus on genotyping and identifying specific genetic variations associated with drug response. However, clinical pharmacology would benefit from the introduction of new methodologies capable of providing information that could complement this genomic information. This is necessary because drug metabolism and utilization involves many different enzymes, multiple organs, several compartments and even the microbiome, being not always possible to screen for all possible genetic or tissue variants. Furthermore, because drug metabolism varies with ethnicity, age, gender, weight, height and diet - as well as other environmental and physiological variables - it can be particularly challenging to predict how an individual will respond to a drug based on their genotype alone.

In this context, the ability to directly and accurately assess the biological phenotype of patients will be a critical component in determining the correct drug treatment or in predicting the response following a therapeutic treatment. Metabolites are the final products of cellular regulatory processes and their levels can be regarded as the ultimate response of biological systems to genetic and environmental changes. Similarly, to the terms 'transcriptome' or 'proteome', the set of metabolites synthetized by a biological system constitutes its 'metabolome'. Since the metabolome is closely tied to the genotype of an individual as well as its physiology and the surrounding environment, metabolomics offers a unique opportunity to look at genotype-phenotype and genotype-environment relationships. Metabolomics is closely linked to the overall physiopathological status of an individual. Thus, metabolomics may incorporate the biochemical events of thousands of small molecules in cells, tissues, organs, or biological fluids. Disease state or drug exposure could alter such metabolite composition in qualitative and quantitative terms generating complex metabolic signatures. The analysis of these signatures can potentially provide useful information for the diagnosis and prognosis of patients as well as for predicting pharmacological responses to specific interventions. Additionally, specific metabolic signatures occur after drug treatment, thus providing information from pathways targeted or affected by drug therapy.

This review provides specific examples of metabolomics applications in the field of clinical pharmacology and precision medicine with a focus on the therapeutic management of cancer and in the translation of these results to the clinics.
-end-
Authors: Dr. Leonor Puchades-Carrasco

Affiliation: Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe / Instituto de Investigación Sanitaria La Fe, Valencia, Spain

Dr. Antonio Pineda- Lucena

Affiliation: Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain

Bentham Science Publishers

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.