Nav: Home

Brain-computer interface, promise of restoring communication discussed at AAAS presentation

February 15, 2019

Brain-computer interfaces promise to restore communication for individuals with severe speech and physical impairments. Current brain computer interfaces share many features of high-tech, conventional augmentative and alternative communication systems, but via direct brain link. Choosing the "right" brain-computer interface that maximizes reliability of the neural control signal and minimizes fatigue and frustration is critical.

Jonathan Brumberg, assistant professor of speech-language-hearing at the University of Kansas, will present on this subject and demonstrate a variety of brain-computer interfaces in his talk, "Evolution in Technology to Aid and Restore Communication," at the AAAS Annual Meeting in Washington, D.C.

What: "Talking without Speaking: Overcoming Communication Challenges with Technology," a scientific sessions panel at AAAS.
Who: Jonathan Brumberg, University of Kansas, Lawrence, KS; brumberg@ku.edu
When: 10:00 AM - 11:30 AM Sunday, February 17, 2019
Where: Marriott Wardman Park - Thurgood Marshall Ballroom East, 2660 Woodley Rd NW, Washington, D.C., 20008

Background (panel description): Millions live with developmental or acquired communication disorders that significantly limit their ability to communicate with those around them. People can be left at a loss for words because of disorders such as autism, cerebral palsy, or intellectual disability, as well as acquired disorders such as stroke and brain injury. Augmentative and alternative communication (AAC) helps people overcome communication barriers via a range of high- and low-tech options. No longer simply science fiction, brain-computer interfaces can now be a plausible solution for acquired disorders. Evolving mobile technology has helped to normalize AAC use by making tablet and smartphones central to everyday interaction. However, the attitude that there's an app for everything creates its own problems. First, basic language challenges, such as aphasia and autism, require well-organized interface designs and partner support for successful AAC use. For people with relatively intact cognitive-linguistic skills, barriers include physical access to devices. The recipe for successful communication for people needing AAC requires the right technology as well as an understanding of user abilities and limitations. While possibilities are endless, considerations about the application of technology must always be at the forefront of AAC implementation practice. The session explores these scientific opportunities and pragmatic challenges.
-end-
Additional speakers:

Aimee Dietz, University of Cincinnati, Cincinnati, OH: "Post-Stroke Aphasia - Tapping Residual Strengths to (Re)Access Language"

Cathy Binger, University of New Mexico, Albuquerque, NM: "Finding a Voice: Unlocking Communication Using Tablet Software"

Recent related papers:

Brumberg, J. S., Pitt, K. M., Mantie-Kozlowski, A., and Burnison, J. D. (2018). Brain-Computer Interfaces for Augmentative and Alternative Communication: A Tutorial. Americal Journal of Speech-Language Pathology 27(1), 1-12. doi: 10.1044/2017_AJSLP-16-0244. Pitt, K. M. and Brumberg, J. S. (2018a). A Screening Protocol Incorporating Brain-Computer Interface Feature Matching Considerations for Augmentative and Alternative Communication. Assistive Technology. doi: 10.1080/10400435.2018.1512175.

Pitt, K. M. and Brumberg, J. S. (2018b). Guidelines for Feature Matching Assessment of Brain-Computer Interfaces for Augmentative and Alternative Communication. American Journal of Speech-Language Pathology 27(3), 950-964. doi: 10.1044/2018_AJSLP-17-0135.

Brumberg, J. S., Pitt, K. M., and Burnison, J. D. (2018). A non-invasive brain-computer interface for real-time speech synthesis: the importance of multimodal feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(4), 874-881. PMCID: PMC5906041. doi: 10.1109/TNSRE.2018.2808425.

Brumberg, J. S., Nguyen, A., Pitt, K. M., and Lorenz, S. D. (2018). Examining sensory ability, feature matching, and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential. Disability and Rehabilitation: Assistive Technology, 1-9. doi: 10.1080/17483107.2018.1428369.

University of Kansas

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".