Brain-computer interface, promise of restoring communication discussed at AAAS presentation

February 15, 2019

Brain-computer interfaces promise to restore communication for individuals with severe speech and physical impairments. Current brain computer interfaces share many features of high-tech, conventional augmentative and alternative communication systems, but via direct brain link. Choosing the "right" brain-computer interface that maximizes reliability of the neural control signal and minimizes fatigue and frustration is critical.

Jonathan Brumberg, assistant professor of speech-language-hearing at the University of Kansas, will present on this subject and demonstrate a variety of brain-computer interfaces in his talk, "Evolution in Technology to Aid and Restore Communication," at the AAAS Annual Meeting in Washington, D.C.

What: "Talking without Speaking: Overcoming Communication Challenges with Technology," a scientific sessions panel at AAAS.
Who: Jonathan Brumberg, University of Kansas, Lawrence, KS; brumberg@ku.edu
When: 10:00 AM - 11:30 AM Sunday, February 17, 2019
Where: Marriott Wardman Park - Thurgood Marshall Ballroom East, 2660 Woodley Rd NW, Washington, D.C., 20008

Background (panel description): Millions live with developmental or acquired communication disorders that significantly limit their ability to communicate with those around them. People can be left at a loss for words because of disorders such as autism, cerebral palsy, or intellectual disability, as well as acquired disorders such as stroke and brain injury. Augmentative and alternative communication (AAC) helps people overcome communication barriers via a range of high- and low-tech options. No longer simply science fiction, brain-computer interfaces can now be a plausible solution for acquired disorders. Evolving mobile technology has helped to normalize AAC use by making tablet and smartphones central to everyday interaction. However, the attitude that there's an app for everything creates its own problems. First, basic language challenges, such as aphasia and autism, require well-organized interface designs and partner support for successful AAC use. For people with relatively intact cognitive-linguistic skills, barriers include physical access to devices. The recipe for successful communication for people needing AAC requires the right technology as well as an understanding of user abilities and limitations. While possibilities are endless, considerations about the application of technology must always be at the forefront of AAC implementation practice. The session explores these scientific opportunities and pragmatic challenges.
-end-
Additional speakers:

Aimee Dietz, University of Cincinnati, Cincinnati, OH: "Post-Stroke Aphasia - Tapping Residual Strengths to (Re)Access Language"

Cathy Binger, University of New Mexico, Albuquerque, NM: "Finding a Voice: Unlocking Communication Using Tablet Software"

Recent related papers:

Brumberg, J. S., Pitt, K. M., Mantie-Kozlowski, A., and Burnison, J. D. (2018). Brain-Computer Interfaces for Augmentative and Alternative Communication: A Tutorial. Americal Journal of Speech-Language Pathology 27(1), 1-12. doi: 10.1044/2017_AJSLP-16-0244. Pitt, K. M. and Brumberg, J. S. (2018a). A Screening Protocol Incorporating Brain-Computer Interface Feature Matching Considerations for Augmentative and Alternative Communication. Assistive Technology. doi: 10.1080/10400435.2018.1512175.

Pitt, K. M. and Brumberg, J. S. (2018b). Guidelines for Feature Matching Assessment of Brain-Computer Interfaces for Augmentative and Alternative Communication. American Journal of Speech-Language Pathology 27(3), 950-964. doi: 10.1044/2018_AJSLP-17-0135.

Brumberg, J. S., Pitt, K. M., and Burnison, J. D. (2018). A non-invasive brain-computer interface for real-time speech synthesis: the importance of multimodal feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(4), 874-881. PMCID: PMC5906041. doi: 10.1109/TNSRE.2018.2808425.

Brumberg, J. S., Nguyen, A., Pitt, K. M., and Lorenz, S. D. (2018). Examining sensory ability, feature matching, and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential. Disability and Rehabilitation: Assistive Technology, 1-9. doi: 10.1080/17483107.2018.1428369.

University of Kansas

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.