New high-throughput method to study gene splicing at an unprecedented scale

February 15, 2020

SAN DIEGO, CA - Genes are like instructions, but with options for building more than one thing. Daniel Larson, senior investigator at the National Cancer Institute, studies this gene "splicing" process, which happens in normal cells and goes awry in blood cancers like leukemia. Larson, postdoctoral associate Yihan Wan, and colleagues developed a new technique to study gene splicing at an unprecedented scale, revealing new details into the process. Larson will present the team's work on Sunday, February 16, at the 64th Annual Meeting of the Biophysical Society in San Diego, California.

Imagine a long list of instructions with three parts. If you cut and paste sections one and two together you could build a pick-up truck, or if you glued part one and three, you could make a car. Since you wouldn't want to cut the original template and lose part of your instructions forever, you start by making a copy. This is how it works in our cells--DNA instructions are copied into RNA, before being cut and spliced together, and serving as instructions for a protein and its variations. Gene splicing is an important way that gene expression is regulated to create protein diversity.

"Splicing is one of the long standing mysteries in gene expression, especially for human genes because most of the gene gets cut out. We still don't know how the cell knows where to splice," Larson says. "We also have very little idea of how splicing varies from cell to cell and its consequences for biology." To start answering those questions, Larson, Wan, and colleagues developed and implemented a genetic trick to label thousands of genes at once to generate a comprehensive view of how RNA is being made and processed.

The team inserted a gene into the genome of human cells that causes RNA transcripts to become fluorescent. Using high-throughput single-cell imaging across thousands of cells, they tracked the RNAs from individual genes as they were made and spliced in real-time. Though the fluorescent probe was inserted randomly into the genome, they were able to use deep sequencing to determine which gene had been labeled, and then match that data to the imaging data.

"Our results, from nearly 1,000 genes, show that splicing happens far more often than anyone previously expected," Larson says. He also revealed that there's an incredible amount of variability in gene expression timing, from the amount of time a gene stays dormant, to the amount of time before splicing occurs. And the spliceosome, the cellular machine that does the splicing, seems to be very effective at this cutting and pasting process, even when it has huge pieces to remove.

Larson hopes his new method will help scientists fully understand gene splicing by the spliceosome. "Because the spliceosome is frequently mutated in cancer, how the spliceosome is making decisions and what these spliceosomes do is a pressing question in medicine," Larson says.

Biophysical Society

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to