Heartbeat secrets unlocked as cardiac rhythm gene role identified

February 15, 2021

Researchers have used the zebrafish (Danio rerio) to identify the role of a gene involved in cardiac rhythm, which could help explain the fundamentals of what it takes to make a human heartbeat.

The University of Melbourne study also found that mutation of the gene, Tmem161b, causes potentially fatal cardiac arrhythmia. 2.5 per cent of Australians are living with cardiac arrhythmia (
Published in Proceedings of National Academy of Sciences of the United States of America (
the research could lead to better understanding and treatment of the condition in humans.

University of Melbourne Associate Professor Kelly Smith said the research discovered what Tmem161b does, when previously we had no idea of its function.

"Zebrafish eggs were used as they have complex beating hearts, similar to humans," Associate Professor Smith said. "Eighty per cent of zebrafish genes are like ours and both use the same basic 'equipment'."

The researchers used naturally produced eggs to observe organ development under a microscope. The eggs are translucent, which allowed observation without interference.

Associate Professor Smith said this important discovery would improve our knowledge of the heartbeat.

"What's important is, it describes a new gene in cardiac rhythm, which helps us to understand the fundamentals of what it takes to make a heartbeat," Associate Professor Smith said.

"Until now, no-one has known what it does, which makes this research so exciting.

"We screened thousands of zebrafish families and found one with inherited arrhythmia. Working backwards from there, we found which gene was mutated to cause the arrhythmia. It turned out to be a gene that was completely uncharacterised."

Associate Professor Smith said she suspected the finding would be relevant in humans.

"Given the prevalence of cardiac arrhythmia in Australia, the more we know about how the heart works, the better," she said.

"The gene described in the research appears to play a central function, so we expect it to be important in more than just controlling heart rhythm. But that will take time to explore.

"If this turns out to be significant in humans, it will provide a new candidate for genetic screening of patients with cardiac arrhythmias."
The project also involved the University of Queensland, the Hubrecht Institute at Utrecht University, Amsterdam Medical Centre and the Florey Institute of Neuroscience and Mental Health.

University of Melbourne

Related Zebrafish Articles from Brightsurf:

Zebrafish embryos help prove what happens to nanoparticles in the blood
What happens to the nanoparticles when they are injected into the bloodstream, for example, to destroy solid tumours?

Social experiences impact zebrafish from an early age
Study in zebrafish demonstrates that early social experiences have an effect on the behaviour of the fish even at an age when they are still not considered ''social''.

How zebrafish maintain efficient and fair foraging behaviours
New insight on how zebrafish achieve near-optimal foraging efficiency and fairness among groups has been published today in the open-access journal eLife.

How the zebrafish got its stripes
Animal patterns are a source of endless fascination, and now researchers at the University Bath have worked out how zebrafish develop their stripes.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Zebrafish teach researchers more about atrial fibrillation
Genetic research in zebrafish at the University of Copenhagen has surprised the researchers behind the study.

How decisions unfold in a zebrafish brain
Researchers were able to track the activity of each neuron in the entire brain of zebrafish larvae and reconstruct the unfolding of neuronal events as the animals repeatedly made 'left or right' choices in a behavioral experiment.

'Census' in the zebrafish's brain
Dresden scientists have succeeded in determining the number and type of newly formed neurons in zebrafish; practically conducting a 'census' in their brains.

Zebrafish 'avatars' can help decide who should receive radiotherapy treatment
To date, there is no method for clearly determining whether radiotherapy will be an effective treatment for individual cancer patients.

Special cells contribute to regenerate the heart in Zebrafish
It is already known that zebrafish can flexibly regenerate their hearts after injury.

Read More: Zebrafish News and Zebrafish Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.