Moffitt uses mathematical modeling to identify factors that determine adaptive therapy success

February 15, 2021

TAMPA, Fla. - One of the most challenging issues in cancer therapy is the development of drug resistance and subsequent disease progression. In a new article featured on this month's cover of Cancer Research, Moffitt Cancer Center researchers, in collaboration with Oxford University, report results from their study using mathematical modeling to show that cell turnover impacts drug resistance and is an important factor that governs the success of adaptive therapy.

Cancer treatment options have increased substantially over the past few decades; however, many patients eventually develop drug resistance. Physicians strive to overcome resistance by either trying to target cancer cells through an alternative approach or targeting the resistance mechanism itself, but success with these approaches is often limited, as additional resistance mechanisms can arise.

Researchers in Moffitt's Integrated Mathematical Oncology Department and Center of Excellence for Evolutionary Therapy believe that resistance may partly develop because of the high doses of drugs that are commonly used during treatment. Patients are typically administered a maximum tolerated dose of therapy that kills as many cancer cells as possible with the fewest side effects. However, according to evolutionary theories, this maximum tolerated dose approach could lead to drug resistance because of the existence of drug resistant cells before treatment even begins. Once sensitive cells are killed by anti-cancer therapies, these drug resistant cells are given free rein to divide and multiply. Moffitt researchers believe an alternative treatment strategy called adaptive therapy may be a better approach to kill cancer cells and minimize the development of drug resistance.

"Adaptive therapy aims not to eradicate the tumor, but to control it. Therapy is applied to reduce tumor burden to a tolerable level but is subsequently modulated or withdrawn to maintain a pool of drug-sensitive cancer cells," said Alexander Anderson, Ph.D., chair of the Integrated Mathematical Oncology Department and founding director of the Center of Excellence for Evolutionary Therapy.

Previous laboratory studies have shown that adaptive therapy can prolong the time to cancer progression for several different tumor types, including ovarian, breast and melanoma. Additionally, a clinical trial in prostate cancer patients at Moffitt has shown that compared to standard treatment, adaptive therapy increased the time to cancer progression by approximately 10 months and reduced the cumulative drug usage by 53%.

Despite these encouraging results, it is unclear which tumor types will respond best to adaptive therapy in the clinic. Recent studies have shown that the success of adaptive therapy is dependent on different factors, including levels of spatial constraint, the fitness of the resistant cell population, the initial number of resistant cells and the mechanisms of resistance. However, it is unclear how the cost of resistance factors into a tumor's response to adaptive therapy.

The cost of resistance refers to the idea that cells that become resistant have a fitness advantage over non-resistant cells when a drug is present, but this may come at a cost, such as a slower growth rate. However, drug resistance is not always associated with a cost and it is unclear whether a cost of resistance is necessary for the success of adaptive therapy.

The research team at Moffitt used mathematical modeling to determine how the cost of resistance is associated with adaptive therapy. They modeled the growth of drug sensitive and resistant cell populations under both continuous therapy and adaptive therapy conditions and compared their time to disease progression in the presence and absence of a cost of resistance.

The researchers showed that tumors with higher cell density and those with smaller levels of pre-existing resistance did better under adaptive therapy conditions. They also showed that cell turnover is a key factor that impacts the cost of resistance and outcomes to adaptive therapy by increasing competition between sensitive and resistance cells. To do so, they made use of phase plane techniques, which provide a visual way to dissect the dynamics of mathematical models.

"I'm a very visual person and find that phase planes make it easy to gain an intuition for a model. You don't need to manipulate equations, which makes them great for communicating with experimental and clinical collaborators. We are honored that Cancer Research selected our collage of phase planes for their cover and hope this will help making mathematical oncology accessible to more people," said Maximilian Strobl, lead study author and doctoral candidate at University of Oxford.

To confirm their models, the researchers analyzed data from 67 prostate cancer patients undergoing intermittent therapy treatment, a predecessor of adaptive therapy.

"We find that even though our model was constructed as a conceptual tool, it can recapitulate individual patient dynamics for a majority of patients, and that it can describe patients who continuously respond, as well as those who eventually relapse," said Anderson.

While more studies are needed to understand how adaptive therapies may benefit patients, researchers are hopeful their data will lead to better indicators of which tumors will respond to adaptive therapy.

"With better understanding of tumor growth, resistance costs, and turnover rates, adaptive therapy can be more carefully tailored to patients who stand to benefit from it the most and, more importantly, highlight which patients may benefit from multi-drug approaches," said Anderson.
Their work was supported by funding from the Engineering and Physical Sciences Research Council, the Medical Research Council, the National Institutes of Health and the Moffitt Center of Excellence for Evolutionary Therapy.

About Moffitt Cancer Center

Moffitt is dedicated to one lifesaving mission: to contribute to the prevention and cure of cancer. The Tampa-based facility is one of only 51 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt's scientific excellence, multidisciplinary research, and robust training and education. Moffitt is the No. 11 cancer hospital and has been nationally ranked by U.S. News & World Report since 1999. Moffitt's expert nursing staff is recognized by the American Nurses Credentialing Center with Magnet® status, its highest distinction. With more than 7,000 team members, Moffitt has an economic impact in the state of $2.4 billion. For more information, call 1-888-MOFFITT (1-888-663-3488), visit, and follow the momentum on Facebook, Twitter, Instagram and YouTube.

H. Lee Moffitt Cancer Center & Research Institute

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to