Critical role in programmed cell death identified

February 16, 2005

Hanover, NH--Dartmouth Medical School geneticists have found links in the cell death machinery of worms and mammals, opening new avenues for studying and targeting a process vital to development and implicated in cancer and autoimmune diseases.

The work, reported in the February 17 issue of Nature, demonstrates the role of mitochondria, the cellular power plant, in prompting worm cells to self destruct. These results unify cell death models along the evolutionary spectrum, from simple animal systems to humans.

In spite of its name, programmed cell death, or apoptosis, is essential for life; it's needed for nervous system development and it keeps the body up and running. Miscues and failures are instrumental in cancer, autoimmune disorders or neurodegenerative diseases.

Mitochondria, the organelles responsible for producing energy to fuel cell processes, also appear to release molecules that set the cell death program in motion. While their activity in mammalian cell death was known, mitochondrial involvement in worms had not previously been shown.

The new work, led by Dr. Barbara Conradt, assistant professor of genetics at Dartmouth Medical School, reveals the importance of mitochondria in cell death in the roundworm C. elegans, enhancing the view of how cell death is conserved from worms to humans.

"Now it seems that there is really one way of killing cells and it involves these mitochondria. Using genetics, we could rigorously show that mitochondria are part of it. It unifies two different hypothesis and makes worms a great model to analyze how cell death is induced, " Conradt said.

Mitochondria are dynamic structures, constantly changing shape, budding and fusing. In cells instructed to die, the mitochondria tend to become smaller or fragment, but whether this fragmentation is a requirement for cell death or a byproduct has been unclear, until now.

Conradt and her colleagues determined that mitochondrial fragmentation is required for cells to die and that the process that commits cells to the point of no return happens quickly. Conradt said it's the clearest confirmation yet that mitochondrial fragmentation is critical in killing cells.

C. elegans worms are a convenient model system, Conradt explained, with a well documented cell lineage that facilitates genetic manipulation. Their cell death machinery is simple, with one component for each of the different factors involved in the central cell killing apparatus. Mammals on the other hand have multiple components or families of proteins for these factors; moreover, their cell death is more sporadic and harder to pinpoint.

In worms, scientists know exactly which cells are dying, and when and where. During development, 1,090 cells form, but 131 of these cells die; the same cells always die at the same time and at the same place. This feature makes it possible to identify mutant worms, in which cells that should have died instead live. Worms whose cell death program is blocked survive, at least in the lab, with their 131 extra cells. Such studies are impractical in mammals because cell death is essential and animals with a cell death defect die.

The researchers demonstrated that when they cause worm mitochondria to fragment without instructing cells to die, the cells still die and when they block fragmentation, the cells survive; in other words, blocking fragmentation prevents cell death, inducing fragmentation provokes cell death.

"This programmed cell death is so important and the more players we know that are involved, the more potential targets we have for therapeutics," Conradt said. During development, for example, many neurons are built, but after birth, more than half are eliminated in the central nervous system in mammals: "It's a common safeguard, to ensure that neurons talk to the right neighbors and make the right connections." Also, if cells do not die on schedule, unregulated growth can lead to tumors and other complications.

"Mammalian studies that have implicated mitochondrial fragmentation in cell death have been done under rather artificial conditions, in tissue culture, not using natural cell death stimuli, " Conradt explains. "Our work was done in vivo; in the worm. We looked at cells that normally die, so it's more solid."
-end-
Other members of the team were graduate students Ravi Jagasia and Phillip Grote and colleague Benedikt Westermann of Germany.

The Geisel School of Medicine at Dartmouth

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.