Researchers find Saturn's radio emissions, bright auroras linked

February 16, 2005

Just as the static on an AM radio grows louder with the approach of a summer lightning storm, strong radio emissions accompany bright auroral spots -- similar to Earth's northern lights -- on the planet Saturn, according to a research paper published in the Thursday, Feb. 17 issue of the journal Nature.

William Kurth, research scientist in the University of Iowa College of Liberal Arts and Sciences Department of Physics and Astronomy, says that the data was collected in early 2004, with NASA's Cassini spacecraft measuring the strength of Saturn's solar wind and radio emissions and the Hubble Space Telescope taking pictures of Saturn's aurora, or southern lights. The results also indicated that strong radio emissions grow stronger when the solar wind blows harder.

"We had expected that this might be the case, based on our understanding of auroral radio signals from Earth's auroras, but this is the first time we've been able to compare Saturn's radio emissions with detailed images of the aurora," Kurth says. "This is important to our on-going Cassini studies because this association allows us to have some idea of what the aurora are doing throughout the mission from our continuous radio observations."

Co-author Don Gurnett, Cassini Radio and Plasma Wave Science (RPWS) instrument principal investigator, says the finding means that radio emissions from Saturn's aurora are very similar to radio emissions from the Earth's aurora.

Kurth says that one of Cassini's objectives is to understand how the magnetic field around Saturn, called its magnetosphere, responds to the influence of the solar wind, a hot gas composed of electrons and ions that originates at the Sun and blows past the planets at speeds around one million miles per hour.

Two related papers published by other researchers in Thursday's issue of Nature show that, like a flaming log in a campfire, Saturn's aurora become brighter and more expansive when the solar wind blows harder. However, the distribution of auroras on Saturn differs from those on Earth.

Other discoveries made by UI researchers using the RPWS instrument have included finding that lightning on Saturn is roughly one million times stronger than lightning on Earth; observing that Cassini impacted dust particles as it traversed Saturn's rings; and learning that Saturn's radio rotation rate varies.

The radio sounds of Saturn's rotation -- resembling a heartbeat -- and other sounds of space can be heard by visiting http://www-pw.physics.uiowa.edu/space-audio.

Cassini, carrying 12 scientific instruments, on June 30, 2004 became the first spacecraft to orbit Saturn and began a four-year study of the planet, its rings and its 31 known moons. The $1.4 billion spacecraft is part of the $3.3 billion Cassini-Huygens Mission that includes the European Space Agency's Huygens probe that landed on Saturn's moon Titan in January. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology, Pasadena, Calif. manages the Cassini-Huygens mission for NASA's Office of Space Science, Washington, D.C. JPL designed, developed and assembled the Cassini orbiter. For the latest images and information about the Cassini-Huygens mission, visit: http://www.nasa.gov/cassini
-end-
STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 301, Iowa City, Iowa 52242-2500.

RESEARCH CONTACT: William Kurth, william-kurth@uiowa.edu.
MEDIA CONTACT: Gary Galluzzo, Writer, 319-384-0009, gary-galluzzo@uiowa.edu.

University of Iowa

Related Solar Wind Articles from Brightsurf:

Wind beneath their wings: Albatrosses fine-tuned to wind conditions
A new study of albatrosses has found that wind plays a bigger role in their decision to take flight than previously thought, and due to their differences in body size, males and females differ in their response to wind.

New research deepens understanding of Earth's interaction with the solar wind
A team of scientists at PPPL and Princeton University has reproduced a process that occurs in space to deepen understanding of what happens when the Earth encounters the solar wind.

Hydropower plants to support solar and wind energy in West Africa
Study maps smart electricity mix composed of solar, wind and hydropower for West Africa -- regional cooperation can provide up to 60% reliable and clean electricity

Solar and wind energy sites mapped globally for the first time
Researchers at the University of Southampton have mapped the global locations of major renewable energy sites, providing a valuable resource to help assess their potential environmental impact.

New research helps explain why the solar wind is hotter than expected
When the sun expels plasma, the solar wind cools as it expands through space -- but not as much as the laws of physics would predict.

Solar wind samples suggest new physics of massive solar ejections
A new study led by the University of Hawai'i (UH) at Mānoa has helped refine understanding of the amount of hydrogen, helium and other elements present in violent outbursts from the Sun, and other types of solar 'wind,' a stream of ionized atoms ejected from the Sun.

Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.

Parker Solar Probe traces solar wind to its source on sun's surface: coronal holes
New data from the Parker Solar Probe, which got closer to the sun than any other spacecraft, allowed physicists to map the source of a major component of the solar wind that continually peppers Earth.

Closest-ever approach to the sun gives new insights into the solar wind
The Parker Solar Probe spacecraft, which has flown closer to the sun than any mission before, has found new evidence of the origins of the solar wind.

SwRI-built instrument confirms solar wind slows farther away from the Sun
Measurements taken by the Solar Wind Around Pluto (SWAP) instrument aboard NASA's New Horizons spacecraft are providing important new insights from some of the farthest reaches of space ever explored.

Read More: Solar Wind News and Solar Wind Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.