When good habits go bad

February 16, 2013

BOSTON, MA -- Learning, memory and habits are encoded in the strength of connections between neurons in the brain, the synapses. These connections aren't meant to be fixed, they're changeable, or plastic.

Duke University neurologist and neuroscientist Nicole Calakos studies what happens when those connections aren't as adaptable as they should be in the basal ganglia, the brain's "command center" for turning information into actions.

"The basal ganglia is the part of the brain that drives the car when you're not thinking too hard about it," Calakos said. It's also the part of the brain where neuroscientists are looking for the roots of obsessive-compulsive disorder, Huntington's, Parkinson's, and aspects of autism spectrum disorders.

In her most recent work, which she'll discuss Saturday morning, Feb. 16 at the American Association for the Advancement of Science annual meeting in Boston, Calakos is mapping the defects in circuitry of the basal ganglia that underlie compulsive behavior. She is studying mice that have a synaptic defect that manifests itself as something like obsessive-compulsive behavior.

Calakos' former colleague Guoping Feng developed the mice at Duke before moving to the McGovern Institute for Brain Research at MIT, where he now works. Feng was exploring the construction of synapses by knocking out genes one at a time. One set of mice ended up with facial lesions from endlessly grooming themselves until their faces were rubbed raw. When examining synaptic activity in the basal ganglia of these mice, Calakos' group discovered that metabotropic glutamate receptors, or mGluRs, were overactive and this in turn, left their synapses less able to change. Scientists think overactivity of these receptors can cause many aspects of the autistic spectrum disorder Fragile X mental retardation.

"It's an example of synaptic plasticity going awry," Calakos said. "They're stuck with less adaptable synapses." Calakos is now using the mice to determine whether drugs that inhibit mGluRs can be used to improve their behavior and testing whether the circuit defects are a generalizable explanation for similar behaviors in other mouse models. This work may then lead to new understandings for compulsive behaviors and new treatment opportunities.
-end-
Contact Information:
Nicole Calakos, M.D., Ph.D.
Duke University Center for Translational Neuroscience; Department of Medicine, Division of Neurology; Duke Institute for Brain Sciences.
nicole.calakos@duke.edu
(919) 684-2423

Links:

Calakos Lab: http://neurobiology.duhs.duke.edu/CTN/faculty/calakos/

Calakos Publications: http://www.neuro.duke.edu/training-faculty/phd-training-faculty/nicole-calakos/publications

Duke University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.