Nav: Home

Moths' sweet way of compensating for lack of antioxidants

February 16, 2017

Animals that feed almost solely on nectar, which doesn't produce protective antioxidants, are still able to avoid experiencing oxidative damage to their muscles through a clever adaption that involves converting carbohydrates into antioxidants, a new study reveals. The results help solve a long-standing mystery as to how nectar-feeding species, which don't get an antioxidant boost through their food, are able to expend so much energy without experiencing muscle damage. When muscles expend energy, byproducts called reactive oxygen species (ROS) are released, which can damage cells. Antioxidants are important nutrients that help reduce the damage; most animals mainly attain antioxidants through their diet. Here, Eran Levin and colleagues fed hawkmoths nectar and measured levels of muscle damage after flight, compared to controls that did not consume nectar. Remarkably, the nectar-fed moths flew farther and yet experienced less oxidative damage than controls; as well, they had higher levels of an antioxidant critical for protecting cell membranes. Next, moths were fed nectar containing glucose with differently labeled carbon isotopes, allowing the researchers to track how the nectar was metabolized. Their results reveal that the moths rely on the pentose phosphate pathway (PPP) to covert carbohydrates in the form of sugar into antioxidants. Carlos Martinez del Rio and Michael E. Dillon discuss these findings and the PPP in greater detail in a related Perspective, noting that this ancient mechanism for producing antioxidants may be shared with other animals, including humans.
-end-


American Association for the Advancement of Science

Related Moths Articles:

1976 drought revealed as worst on record for British butterflies and moths
Scientists at the University of York have revealed that the 1976 drought is the worst extreme event to affect butterflies and moths in the 50 years since detailed records began.
Darwin was right: Females prefer sex with good listeners
Almost 150 years after Charles Darwin first proposed a little-known prediction from his theory of sexual selection, researchers have found that male moths with larger antennae are better at detecting female signals.
Gehry's Biodiversity Museum -- favorite attraction for the butterflies and moths in Panama
Ahead of Gehry's Biodiversity Museum's opening in October 2014, Ph.D.
In enemy garb
Biologists expand on more than 150 years of textbook wisdom with a new explanation for wasp mimicry.
The value of nutrition and exercise, according to a moth
How can animals that feed mostly on sugar embark on migrations spanning continents?
More Moths News and Moths Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...