Nav: Home

How much biomass grows in the savannah?

February 16, 2017

Savannahs form one of the largest habitats in the world, covering around one-fifth of the Earth's land area. They are mainly to be found in sub-Saharan Africa. Savannahs are home not only to unique wildlife, including the 'Big Five' -- the African elephant, rhinoceros, Cape buffalo, leopard and lion -- but also to thousands of endemic plant species such as the baobab, or monkey bread tree.

"What's more, the savannahs play a significant role in the global carbon cycle and therefore affect the planet's climate cycles," says Victor Odipo of Friedrich Schiller University, Jena (Germany). The ability of the savannahs to store the greenhouse gas carbon dioxide is ultimately determined by the amount of aboveground woody biomass, adds Odipo, a doctoral candidate at the Institute of Geography's Remote Sensing section. So far, though, it has been difficult to measure this important indicator, with current climate models relying on rough carbon estimates. However, a team of geographers from the universities of Jena and Oxford, and from Germany's Federal Institute for Geosciences and Natural Resources, has now succeeded in establishing a methodology that enables them to measure the aboveground biomass of the savannahs and record even minor changes in the ecosystem. They have presented their results in the specialist journal Forests (DOI: 10.3390/f7120294).

Three-dimensional model of the landscape

The researchers from the University of Jena use both radar data recorded by satellites and laser scanning data collected from the ground. "Radar data can record the biomass over larger geographical areas, given its coverage, but it provides insufficient information about the structure of the vegetation at localised scales," explains Victor Odipo. Typical of the savannah is its patchwork-like structure: a mixture of grass and shrubs with trees of very different heights, either standing alone or in patches. In order to make a detailed record of this structure and be able to convert it into biomass, the satellite data is complemented by ground-based measurements. For this purpose, a terrestrial laser scanner (TLS) is used, which scans its surroundings with a laser beam within a radius of several hundred metres. "This provides us with a comprehensive three-dimensional digital model of the landscape, which enables a precise analysis of the vegetation structure," says Jussi Baade, associate professor of Physical Geography at the University of Jena.

After exhaustive initial tests in the Stadtrodaer Forest and the slopes of the Saale valley near Jena, the researchers have now applied their methodology to the savannah of Kruger National Park in South Africa. In an area of some nine square kilometres for which radar satellite data is available, they collected laser scanning data from more than 40 plots, and integrated this data into a model for calculating the biomass. "The laser scanning data collected from selected points does give significantly more precise results than the satellite radar," notes Christian Berger, co-author of the study and head of the research project on which Victor Odipo's doctoral thesis is based. "But on its own, and due to smaller coverage compared with airborne data, this method is not suitable for investigating large areas." As this study shows, however, combining the two methods allows estimation of biomass with a range of 2.9 tonnes per hectare in areas of grass and shrubs to 101.6 tonnes per hectare in areas with trees.

Monitoring changes in the ecosystem

These results cannot be used to create new climate models. "We also need reliable data to monitor changes in the savannah ecosystem," says Victor Odipo. He points to a surprising incidental find: the researchers' measurements showed that the biomass of a substantial part of the study area in Kruger National Park is declining from year to year. "We didn't expect that," says Odipo, "given that this is a nature reserve." It turned out, however, that these changes - unlike those in most unprotected areas - were not primarily the result of human activity, but rather the work of elephants, which bring down a large number of trees.

This study was supported by the German Academic Exchange Service (DAAD), the German Research Foundation (DFG), and the Federal Ministry of Education and Research (BMBF). The terrestrial laser scanner was acquired with the help of EFRD funds from the Free State of Thuringia.
-end-
Original publication:

Odipo VO et al. Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna, Forests; DOI:10.3390/f7120294

Contact:

Victor Odipo, Prof. Christiane Schmullius
Institute of Geography of Friedrich Schiller University, Jena
Grietgasse 6, 07743 Jena, Germany
Phone: +49-0-3641 / 948895, 49-0-3641 / 948880
E-mail: victor.onyango@uni-jena.de, c.schmullius@uni-jena.de

Friedrich-Schiller-Universitaet Jena

Related Biomass Articles:

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.
A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.
Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.
Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.
Biotech breakthrough turns waste biomass into high value chemicals
A move towards a more sustainable bio-based economy has been given a new boost by researchers who have been able to simplify a process to transform waste materials into high value chemicals.
How preprocessing methods affect the conversion efficiency of biomass energy production
Research on energy production from biomass usually focuses on the amount of energy generated.
Supercomputing improves biomass fuel conversion
Pretreating plant biomass with THF-water causes lignin globules on the cellulose surface to expand and break away from one another and the cellulose fibers.
Whole-tree harvesting could boost biomass production
Making the shift to renewable energy sources requires biomass, too.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Symbiotic upcycling: Turning 'low value' compounds into biomass
Kentron, a bacterial symbiont of ciliates, turns cellular waste products into biomass.
More Biomass News and Biomass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.