Nav: Home

Investigating the impact of 'legacy sediments' on water quality

February 16, 2017

A University of Delaware researcher has been awarded a $499,500 grant from the United States Department of Agriculture (USDA) to determine if stream-bank legacy sediments are significant sources of nutrients to surface waters and investigate how they may influence microbial processes and nutrient cycling in aquatic ecosystems.

Shreeram Inamdar, professor in the Department of Plant and Soil Sciences (PLSC) in UD's College of Agriculture and Natural Resources and director of the Water Science and Policy graduate program, will be joined on the project by Jinjun Kan, a microbial ecologist from the Stroud Water Research Center (SWRC) in Avondale, Pennsylvania.

Legacy sediments

The significance of legacy sediments was highlighted in a study published in 2008 in the prestigious journal Science by Robert Walter and Dorothy Merritts from the Franklin and Marshall College in Pennsylvania.

They brought attention to large stores of legacy sediments in the valley bottoms of the Mid-Atlantic and eastern U.S. which are visible along stream banks as a light-brown colored soil horizon -- usually 1-3 meters in depth -- underlain by a pre-colonial, dark, organic layer.

Walter and Merritts attributed the legacy sediments to a combination of widespread colonial era activities such as large-scale erosion from agriculture, forest removal and the construction of numerous mill dams on streams and rivers in the region.

Low head mill dams obstructed the flow of water, reduced flow velocities and resulted in substantial sediment accumulation behind the dams.

Most of the dams have since breached and eroded, resulting in contemporary streams that are highly incised with exposed vertical stream banks that are vulnerable to erosion and collapse. Indeed, anomalously elevated sediment exports from Mid-Atlantic watersheds have already been reported by numerous researchers.

Storm runoff

Work by Inamdar's research group in predominantly forested watersheds in Maryland has found very high concentrations and exports of fine sediments in stream runoff following intense winter storms and tropical storms such as Irene and Lee in 2011.

However, how much of this runoff sediment load originated from streambank legacy sediments is unknown and is a crucial question that needs to be addressed, as recent studies also suggest that the stream-bank legacy sediments could be rich in nutrients such as nitrogen and phosphorus.

Taken together, these observations are fueling increasing concern that legacy sediments could be an important contributor of nonpoint source pollution to our surface waters and could pose a significant threat to the health of vulnerable downstream aquatic ecosystems such as the Chesapeake and Delaware bays.

This new USDA grant focuses specifically on addressing these critical knowledge gaps:
  • What is the contribution of stream bank legacy sediments to suspended sediment and nutrient exports from watersheds?

  • What types of hydrologic and storm-event conditions are responsible for legacy sediment erosion and nutrient contributions to runoff?

  • What is the fate of legacy sediments after they are deposited on the floodplains and/or in the fluvial network?

  • What is the microbial community composition of stream-bank legacy sediments and how does it influence nutrient transformation and cycling in stream ecosystems?, and

  • What is the bioavailability of legacy sediment/nutrients and what implications do these inputs have for aquatic ecosystems?

The study will be conducted in the Big Elk Creek watersheds in Maryland, where Inamdar has conducted research on various aspects of water pollution, watershed processes, and climate variability for the past 11 years.

Research techniques

The watershed has substantial deposits of legacy sediments along stream tributaries. Stream water sampling for sediment and nutrients will be performed continuously and all year round using automated runoff samplers and in-situ, high frequency electronic sensors that monitor water quality every 15 to 30 minutes.

Various forms of carbon, nitrogen and phosphorus in runoff sediments and water will also be analyzed. Much of the monitoring infrastructure is already in place in the watersheds.

Suspended legacy sediments in runoff will be identified using a combination of methods including chemical and isotopic tracers, novel biomarkers, and microbial fingerprinting and source tracking.

Chemical and biological fate of legacy sediments post erosion will be simulated using laboratory and field studies. Legacy sediment mesocosms will be subjected to a range of moisture and temperature conditions observed typically in the field and the release and sequestration of nutrients in runoff waters will be quantified.

Molecular, DNA-based approaches will be applied to characterize and quantify the microbial population structures for sediments. Genomic DNA will be extracted from sediment samples and small subunits of the ribosomal RNA gene will be applied to monitor general microbial population dynamics using a fingerprinting technique which provides a quick snapshot of the major populations of the environmental microbial communities.

In order to characterize and quantify the potential of nutrient transformation processes -- such as nitrification and denitrification -- the researchers will quantify certain functional genes that are involved in nutrient cycling in sediments.

Results from this study will be valuable for university researchers as well as watershed managers and natural resource agencies tasked to protect water quality.

Stream bank erosion is an increasing challenge in the northeast and mid-Atlantic and many stream restoration projects are currently being implemented at considerable cost to address legacy sediments.

Inamdar and Kan will connect with federal, state, and local agencies during and after the project to convey key results and lessons from this study. Joining Inamdar and Kan on the project this summer and fall will be two new Water Science and Policy graduate students who will conduct this research as a part of their master of science or doctoral research.
-end-


University of Delaware

Related Agriculture Articles:

Digital agriculture paves the road to agricultural sustainability
In a study published in Nature Sustainability, researchers outline how to develop a more sustainable land management system through data collection and stakeholder buy-in.
Comparisons of organic and conventional agriculture need to be better, say researchers
The environmental effects of agriculture and food are hotly debated.
EU agriculture not viable for the future
The current reform proposals of the EU Commission on the Common Agricultural Policy (CAP) are unlikely to improve environmental protection, say researchers led by the German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ) and the University of Göttingen in the journal Science.
Global agriculture: Impending threats to biodiversity
A new study compares the effects of expansion vs. intensification of cropland use on global agricultural markets and biodiversity, and finds that the expansion strategy poses a particularly serious threat to biodiversity in the tropics.
A new vision for genomics in animal agriculture
Iowa State University animal scientists helped to form a blueprint to guide the next decade of animal genomics research.
New pathways for sustainable agriculture
Diversity beats monotony: a colourful patchwork of small, differently used plots can bring advantages to agriculture and nature.
The future of agriculture is computerized
Researchers at the MIT Media Lab Open Agriculture Initiative have used computer algorithms to determine the optimal growing conditions to improve basil plants' taste by maximizing the concentration of flavorful molecules known as volatile compounds.
When yesterday's agriculture feeds today's water pollution
Water quality is threatened by a long history of fertilizer use on land, Canadian scientists find.
How does agriculture affect vulnerable insect-eating birds?
Aerial insectivores -- birds that hunt for insect prey on the wing -- are declining across North America as agricultural intensification leads to diminishing insect abundance and diversity in many areas.
Brazil's Forest Code can balance the needs of agriculture and the environment
If fully implemented, Brazil's Forest Code, an environmental law designed to protect the country's native vegetation and regulate land use, will not prevent growth in Brazilian agriculture, according to new IIASA-led research.
More Agriculture News and Agriculture Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.