Nav: Home

New studies unravel mysteries of how PARP enzymes work

February 16, 2017

DALLAS - Feb. 16, 2017 - A component of an enzyme family linked to DNA repair, stress responses, and cancer also plays a role in enhancing or inhibiting major cellular activities under physiological conditions, new research shows.

The UT Southwestern Medical Center research focused on PARP-1, a member of the PARP enzyme family. Short for poly (ADP-ribose) polymerase, PARP became the focus of attention in 2014 with approval of the first PARP inhibitor drug to treat advanced ovarian cancer associated with mutant BRCA DNA repair genes. The drug, Lynparza or olaparib, blocks nuclear PARP enzymes, inhibiting DNA repair even further and causing genome instability that kills the cancer cells.

In two related studies published in Molecular Cell, UT Southwestern scientists describe how PARP-1 can act at a molecular level under physiological conditions to reduce the formation of fat cell precursors and to help maintain the unique ability of embryonic stem cells to self-renew and become any of a variety of different cell types. One of the studies is published online today; the earlier study posted Jan. 19.

PARP-1's role in these cellular processes occurs during gene transcription, when DNA is copied into messenger RNA molecules, which can then be used as a template to produce new proteins.

Researchers already knew about PARP's role in DNA damage-related diseases like cancer, said Dr. W. Lee Kraus, senior author of both UTSW studies and Professor of Obstetrics and Gynecology, and Pharmacology at UT Southwestern. Dr. Kraus also directs the Cecil H. and Ida Green Center for Reproductive Biology Sciences and holds the Cecil H. and Ida Green Distinguished Chair in Reproductive Biology Sciences.

These findings take the field in a new direction, Dr. Kraus said.

"Our research shows that PARP-1 also plays a role in normal physiological processes and normal cellular functions. It's an important component of the cellular machinery that senses and responds to the environment," he said.

While studies in mouse models show PARP-1 is not essential for life, it becomes important when an organism needs to adapt to changing environmental or physiological cues, such as developmental processes or altered diet, Dr. Kraus said.

Understanding how PARP-1 works could one day help researchers find ways to target the protein to treat metabolic disorders or obesity, he said.

The two new UT Southwestern studies outline for the first time the exact molecular mechanisms of PARP-1's roles in inhibiting the formation of fat cell precursors and in maintaining stem cells. Here are the key findings:
  • The first study identifies amino acids on C/EBPb (a key transcription factor required for fat cell formation) that are chemically modified by PARP-1's enzymatic activity through a process called ADP-ribosylation. Modification of C/EBPb interferes with the differentiation of precursor cells into fat cells, according to the study.
  • The second study reports how PARP-1 regulates embryonic stem cell self-renewal and pluripotency (ability to become different cell types), but without using its enzymatic activity. Instead, in this case, PARP-1 functions as a structural component of chromosomes in the nucleus, creating binding sites for the critical embryonic stem cell transcription factor Sox2. This action allows transcription of genes necessary to maintain the ability of embryonic stem cells to continue self-renewing, rather than becoming a specific cell type, the research shows.
-end-
Dr. Ziying Liu, a former graduate student and current postdoctoral researcher, was lead author of the study released today. Co-first authors of the earlier study were Dr. Xin Luo, a former graduate student and current data scientist, and Keun Woo Ryu, a graduate student.

Other authors contributing to one or both studies were Dr. Dae-Seok Kim, Dr. Rebecca Gupte, and Dr. Bryan Gibson, postdoctoral researchers; Tulip Nandu, computational biologist; Dr. Yonghao Yu, Assistant Professor of Biochemistry and a Virginia Murchison Linthicum Scholar in Medical Research; and Dr. Rana Gupta, Assistant Professor of Internal Medicine. Researchers from the Perelman School of Medicine at the University of Pennsylvania also contributed.

The study was supported by funding from the National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases, the Department of Defense Breast Cancer Research Program, the American Heart Association, the Welch Foundation, and the Cecil H. and Ida Green Center for Reproductive Biology Sciences.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 100,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.

 
-end-
This news release is available on our website at http://www.utsouthwestern.edu/news

To automatically receive news releases from UT&bsp;Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews 

UT Southwestern Medical Center

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.