TB study reveals potential targets to treat and control infection

February 16, 2021

San Antonio, Texas (February 15, 2020) - Researchers at the Southwest National Primate Research Center (SNPRC) at Texas Biomedical Research Institute (Texas Biomed) may have found a new pathway to treat and control tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb). Using single-cell RNA sequencing (scRNAseq), a next-generation sequencing technology, scientists were able to further define the mechanisms that lead to TB infection and latency. Co-led by Deepak Kaushal, Ph.D., Director of the SNPRC, this is the first study that used scRNAseq to study TB in macaques in depth. Results from the study were published in Cell Host & Microbe.

"Single-cell RNAseq is a novel approach that has developed in the past three or four years. It's an approach that allows us to look at the immune response more granularly, in higher resolution," Dr. Kaushal explained. "We were able to identify an immune response to Mtb infection in single lung cells as the infection progressed to disease, in some cases, or was controlled in others."

The number of TB related deaths has decreased by 30% globally. However, according to the World Health Organization, 1.4 million people died from TB in 2019; the disease continues to be one of the top communicable diseases plaguing low-income countries. It's one of several diseases negatively impacted by COVID-19 due to the virus's impact on health systems worldwide. TB is primarily spread by a cough or sneeze from someone who is infected with the disease; however, people with latent TB are not contagious. The disease is both preventable and treatable, but latent TB can become active if disrupted by another invading infection, such as Human Immunodeficiency Virus (HIV) and drug resistance continues to be a major impediment.

The study highlighted that plasmacytoid dendritic cells, which sense infection in the body, overproduce Type I interferons. Plasmacytoid dendritic cells are immune cells sent out to stop a bacteria or virus from replicating or causing disease. However, an overproduction of interferons can also cause harm. In this study, scientists observed that the interferon response correlated with disease instead of control. This information is important to scientists developing TB therapeutics and vaccines. Modifications to therapeutic/vaccine formulas may be needed to address interferon signaling.

"When we have a more precise understanding of how an infection develops, that knowledge can lead us to identify new drugs or therapies to treat disease and improve vaccines," Dr. Kaushal said. "Although our findings decreased the gap in knowledge of TB disease and latent infection, there's still more we need to learn."
This investigation used resources supported by SNPRC's grants P51 OD011133 and U42 OD010442 from the Office of Research Infrastructure Programs, National Institutes of Health. This study was performed in collaboration with Drs. Shabaana Khader and Max Artyomov at Washington University in St. Louis, as well as Dr. Smriti Mehra at Tulane University and their laboratories.

Texas Biomed is one of the world's leading independent biomedical research institutions dedicated to eradicating infection and advancing health worldwide through innovative biomedical research. Texas Biomed partners with researchers and institutions around the world to develop therapeutics and vaccines against viral pathogens causing AIDS, hepatitis, hemorrhagic fever, tuberculosis and parasitic diseases responsible for malaria and schistosomiasis disease. The Institute has programs in host-pathogen interaction, disease intervention and prevention and population health to understand the links between infectious diseases and other diseases such as aging, cardiovascular disease, diabetes and obesity. For more information on Texas Biomed, go to http://www.TxBiomed.org.

Texas Biomedical Research Institute

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.